Cargando…
Electrical Characteristics of CMOS-Compatible SiO(x)-Based Resistive-Switching Devices
The electrical characteristics and resistive switching properties of memristive devices have been studied in a wide temperature range. The insulator and electrode materials of these devices (silicon oxide and titanium nitride, respectively) are fully compatible with conventional complementary metal-...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385009/ https://www.ncbi.nlm.nih.gov/pubmed/37513093 http://dx.doi.org/10.3390/nano13142082 |
_version_ | 1785081298400837632 |
---|---|
author | Koryazhkina, Maria N. Filatov, Dmitry O. Tikhov, Stanislav V. Belov, Alexey I. Serov, Dmitry A. Kryukov, Ruslan N. Zubkov, Sergey Yu. Vorontsov, Vladislav A. Pavlov, Dmitry A. Gryaznov, Evgeny G. Orlova, Elena S. Shchanikov, Sergey A. Mikhaylov, Alexey N. Kim, Sungjun |
author_facet | Koryazhkina, Maria N. Filatov, Dmitry O. Tikhov, Stanislav V. Belov, Alexey I. Serov, Dmitry A. Kryukov, Ruslan N. Zubkov, Sergey Yu. Vorontsov, Vladislav A. Pavlov, Dmitry A. Gryaznov, Evgeny G. Orlova, Elena S. Shchanikov, Sergey A. Mikhaylov, Alexey N. Kim, Sungjun |
author_sort | Koryazhkina, Maria N. |
collection | PubMed |
description | The electrical characteristics and resistive switching properties of memristive devices have been studied in a wide temperature range. The insulator and electrode materials of these devices (silicon oxide and titanium nitride, respectively) are fully compatible with conventional complementary metal-oxide-semiconductor (CMOS) fabrication processes. Silicon oxide is also obtained through the low-temperature chemical vapor deposition method. It is revealed that the as-fabricated devices do not require electroforming but their resistance state cannot be stored before thermal treatment. After the thermal treatment, the devices exhibit bipolar-type resistive switching with synaptic behavior. The conduction mechanisms in the device stack are associated with the effect of traps in the insulator, which form filaments in the places where the electric field is concentrated. The filaments shortcut the capacitance of the stack to different degrees in the high-resistance state (HRS) and in the low-resistance state (LRS). As a result, the electron transport possesses an activation nature with relatively low values of activation energy in an HRS. On the contrary, Ohm’s law and tunneling are observed in an LRS. CMOS-compatible materials and low-temperature fabrication techniques enable the easy integration of the studied resistive-switching devices with traditional analog–digital circuits to implement new-generation hardware neuromorphic systems. |
format | Online Article Text |
id | pubmed-10385009 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103850092023-07-30 Electrical Characteristics of CMOS-Compatible SiO(x)-Based Resistive-Switching Devices Koryazhkina, Maria N. Filatov, Dmitry O. Tikhov, Stanislav V. Belov, Alexey I. Serov, Dmitry A. Kryukov, Ruslan N. Zubkov, Sergey Yu. Vorontsov, Vladislav A. Pavlov, Dmitry A. Gryaznov, Evgeny G. Orlova, Elena S. Shchanikov, Sergey A. Mikhaylov, Alexey N. Kim, Sungjun Nanomaterials (Basel) Article The electrical characteristics and resistive switching properties of memristive devices have been studied in a wide temperature range. The insulator and electrode materials of these devices (silicon oxide and titanium nitride, respectively) are fully compatible with conventional complementary metal-oxide-semiconductor (CMOS) fabrication processes. Silicon oxide is also obtained through the low-temperature chemical vapor deposition method. It is revealed that the as-fabricated devices do not require electroforming but their resistance state cannot be stored before thermal treatment. After the thermal treatment, the devices exhibit bipolar-type resistive switching with synaptic behavior. The conduction mechanisms in the device stack are associated with the effect of traps in the insulator, which form filaments in the places where the electric field is concentrated. The filaments shortcut the capacitance of the stack to different degrees in the high-resistance state (HRS) and in the low-resistance state (LRS). As a result, the electron transport possesses an activation nature with relatively low values of activation energy in an HRS. On the contrary, Ohm’s law and tunneling are observed in an LRS. CMOS-compatible materials and low-temperature fabrication techniques enable the easy integration of the studied resistive-switching devices with traditional analog–digital circuits to implement new-generation hardware neuromorphic systems. MDPI 2023-07-16 /pmc/articles/PMC10385009/ /pubmed/37513093 http://dx.doi.org/10.3390/nano13142082 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Koryazhkina, Maria N. Filatov, Dmitry O. Tikhov, Stanislav V. Belov, Alexey I. Serov, Dmitry A. Kryukov, Ruslan N. Zubkov, Sergey Yu. Vorontsov, Vladislav A. Pavlov, Dmitry A. Gryaznov, Evgeny G. Orlova, Elena S. Shchanikov, Sergey A. Mikhaylov, Alexey N. Kim, Sungjun Electrical Characteristics of CMOS-Compatible SiO(x)-Based Resistive-Switching Devices |
title | Electrical Characteristics of CMOS-Compatible SiO(x)-Based Resistive-Switching Devices |
title_full | Electrical Characteristics of CMOS-Compatible SiO(x)-Based Resistive-Switching Devices |
title_fullStr | Electrical Characteristics of CMOS-Compatible SiO(x)-Based Resistive-Switching Devices |
title_full_unstemmed | Electrical Characteristics of CMOS-Compatible SiO(x)-Based Resistive-Switching Devices |
title_short | Electrical Characteristics of CMOS-Compatible SiO(x)-Based Resistive-Switching Devices |
title_sort | electrical characteristics of cmos-compatible sio(x)-based resistive-switching devices |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385009/ https://www.ncbi.nlm.nih.gov/pubmed/37513093 http://dx.doi.org/10.3390/nano13142082 |
work_keys_str_mv | AT koryazhkinamarian electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices AT filatovdmitryo electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices AT tikhovstanislavv electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices AT belovalexeyi electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices AT serovdmitrya electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices AT kryukovruslann electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices AT zubkovsergeyyu electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices AT vorontsovvladislava electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices AT pavlovdmitrya electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices AT gryaznovevgenyg electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices AT orlovaelenas electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices AT shchanikovsergeya electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices AT mikhaylovalexeyn electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices AT kimsungjun electricalcharacteristicsofcmoscompatiblesioxbasedresistiveswitchingdevices |