Cargando…

YOLOv5 Drone Detection Using Multimodal Data Registered by the Vicon System

This work is focused on the preliminary stage of the 3D drone tracking challenge, namely the precise detection of drones on images obtained from a synchronized multi-camera system. The YOLOv5 deep network with different input resolutions is trained and tested on the basis of real, multimodal data co...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindenheim-Locher, Wojciech, Świtoński, Adam, Krzeszowski, Tomasz, Paleta, Grzegorz, Hasiec, Piotr, Josiński, Henryk, Paszkuta, Marcin, Wojciechowski, Konrad, Rosner, Jakub
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385035/
https://www.ncbi.nlm.nih.gov/pubmed/37514690
http://dx.doi.org/10.3390/s23146396
_version_ 1785081304302223360
author Lindenheim-Locher, Wojciech
Świtoński, Adam
Krzeszowski, Tomasz
Paleta, Grzegorz
Hasiec, Piotr
Josiński, Henryk
Paszkuta, Marcin
Wojciechowski, Konrad
Rosner, Jakub
author_facet Lindenheim-Locher, Wojciech
Świtoński, Adam
Krzeszowski, Tomasz
Paleta, Grzegorz
Hasiec, Piotr
Josiński, Henryk
Paszkuta, Marcin
Wojciechowski, Konrad
Rosner, Jakub
author_sort Lindenheim-Locher, Wojciech
collection PubMed
description This work is focused on the preliminary stage of the 3D drone tracking challenge, namely the precise detection of drones on images obtained from a synchronized multi-camera system. The YOLOv5 deep network with different input resolutions is trained and tested on the basis of real, multimodal data containing synchronized video sequences and precise motion capture data as a ground truth reference. The bounding boxes are determined based on the 3D position and orientation of an asymmetric cross attached to the top of the tracked object with known translation to the object’s center. The arms of the cross are identified by the markers registered by motion capture acquisition. Besides the classical mean average precision (mAP), a measure more adequate in the evaluation of detection performance in 3D tracking is proposed, namely the average distance between the centroids of matched references and detected drones, including false positive and false negative ratios. Moreover, the videos generated in the AirSim simulation platform were taken into account in both the training and testing stages.
format Online
Article
Text
id pubmed-10385035
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103850352023-07-30 YOLOv5 Drone Detection Using Multimodal Data Registered by the Vicon System Lindenheim-Locher, Wojciech Świtoński, Adam Krzeszowski, Tomasz Paleta, Grzegorz Hasiec, Piotr Josiński, Henryk Paszkuta, Marcin Wojciechowski, Konrad Rosner, Jakub Sensors (Basel) Article This work is focused on the preliminary stage of the 3D drone tracking challenge, namely the precise detection of drones on images obtained from a synchronized multi-camera system. The YOLOv5 deep network with different input resolutions is trained and tested on the basis of real, multimodal data containing synchronized video sequences and precise motion capture data as a ground truth reference. The bounding boxes are determined based on the 3D position and orientation of an asymmetric cross attached to the top of the tracked object with known translation to the object’s center. The arms of the cross are identified by the markers registered by motion capture acquisition. Besides the classical mean average precision (mAP), a measure more adequate in the evaluation of detection performance in 3D tracking is proposed, namely the average distance between the centroids of matched references and detected drones, including false positive and false negative ratios. Moreover, the videos generated in the AirSim simulation platform were taken into account in both the training and testing stages. MDPI 2023-07-14 /pmc/articles/PMC10385035/ /pubmed/37514690 http://dx.doi.org/10.3390/s23146396 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lindenheim-Locher, Wojciech
Świtoński, Adam
Krzeszowski, Tomasz
Paleta, Grzegorz
Hasiec, Piotr
Josiński, Henryk
Paszkuta, Marcin
Wojciechowski, Konrad
Rosner, Jakub
YOLOv5 Drone Detection Using Multimodal Data Registered by the Vicon System
title YOLOv5 Drone Detection Using Multimodal Data Registered by the Vicon System
title_full YOLOv5 Drone Detection Using Multimodal Data Registered by the Vicon System
title_fullStr YOLOv5 Drone Detection Using Multimodal Data Registered by the Vicon System
title_full_unstemmed YOLOv5 Drone Detection Using Multimodal Data Registered by the Vicon System
title_short YOLOv5 Drone Detection Using Multimodal Data Registered by the Vicon System
title_sort yolov5 drone detection using multimodal data registered by the vicon system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385035/
https://www.ncbi.nlm.nih.gov/pubmed/37514690
http://dx.doi.org/10.3390/s23146396
work_keys_str_mv AT lindenheimlocherwojciech yolov5dronedetectionusingmultimodaldataregisteredbytheviconsystem
AT switonskiadam yolov5dronedetectionusingmultimodaldataregisteredbytheviconsystem
AT krzeszowskitomasz yolov5dronedetectionusingmultimodaldataregisteredbytheviconsystem
AT paletagrzegorz yolov5dronedetectionusingmultimodaldataregisteredbytheviconsystem
AT hasiecpiotr yolov5dronedetectionusingmultimodaldataregisteredbytheviconsystem
AT josinskihenryk yolov5dronedetectionusingmultimodaldataregisteredbytheviconsystem
AT paszkutamarcin yolov5dronedetectionusingmultimodaldataregisteredbytheviconsystem
AT wojciechowskikonrad yolov5dronedetectionusingmultimodaldataregisteredbytheviconsystem
AT rosnerjakub yolov5dronedetectionusingmultimodaldataregisteredbytheviconsystem