Cargando…
LPO-YOLOv5s: A Lightweight Pouring Robot Object Detection Algorithm
The casting process involves pouring molten metal into a mold cavity. Currently, traditional object detection algorithms exhibit a low accuracy and are rarely used. An object detection model based on deep learning requires a large amount of memory and poses challenges in the deployment and resource...
Autores principales: | Zhao, Kanghui, Xie, Biaoxiong, Miao, Xingang, Xia, Jianqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385279/ https://www.ncbi.nlm.nih.gov/pubmed/37514693 http://dx.doi.org/10.3390/s23146399 |
Ejemplares similares
-
Lightweight aerial image object detection algorithm based on improved YOLOv5s
por: Deng, Lixia, et al.
Publicado: (2023) -
A Lightweight YOLOv5-MNE Algorithm for SAR Ship Detection
por: Pang, Lei, et al.
Publicado: (2022) -
Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model
por: Sun, Yu, et al.
Publicado: (2023) -
Lightweight Proof of Game (LPoG): A Proof of Work (PoW)’s Extended Lightweight Consensus Algorithm for Wearable Kidneys
por: Kumar, Adarsh, et al.
Publicado: (2020) -
SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode
por: Liu, Haiying, et al.
Publicado: (2022)