Cargando…
Homogeneous Sensor Fusion Optimization for Low-Cost Inertial Sensors
The article deals with sensor fusion and real-time calibration in a homogeneous inertial sensor array. The proposed method allows for both estimating the sensors’ calibration constants (i.e., gain and bias) in real-time and automatically suppressing degraded sensors while keeping the overall precisi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385938/ https://www.ncbi.nlm.nih.gov/pubmed/37514726 http://dx.doi.org/10.3390/s23146431 |
Sumario: | The article deals with sensor fusion and real-time calibration in a homogeneous inertial sensor array. The proposed method allows for both estimating the sensors’ calibration constants (i.e., gain and bias) in real-time and automatically suppressing degraded sensors while keeping the overall precision of the estimation. The weight of the sensor is adaptively adjusted according to the RMSE concerning the weighted average of all sensors. The estimated angular velocity was compared with a reference (ground truth) value obtained using a tactical-grade fiber-optic gyroscope. We have experimented with low-cost MEMS gyroscopes, but the proposed method can be applied to basically any sensor array. |
---|