Cargando…

Atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing

BACKGROUND: Vegetation spectral reflectance obtained with hyperspectral imaging (HSI) offer non-invasive means for the non-destructive study of their physiological status. The light intensity at visible and near-infrared wavelengths (VNIR, 0.4–1.0µm) captured by the sensor are composed of mixtures o...

Descripción completa

Detalles Bibliográficos
Autores principales: Qamar, Farid, Dobler, Gregory
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385980/
https://www.ncbi.nlm.nih.gov/pubmed/37516859
http://dx.doi.org/10.1186/s13007-023-01046-6