Cargando…
Atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing
BACKGROUND: Vegetation spectral reflectance obtained with hyperspectral imaging (HSI) offer non-invasive means for the non-destructive study of their physiological status. The light intensity at visible and near-infrared wavelengths (VNIR, 0.4–1.0µm) captured by the sensor are composed of mixtures o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385980/ https://www.ncbi.nlm.nih.gov/pubmed/37516859 http://dx.doi.org/10.1186/s13007-023-01046-6 |
_version_ | 1785081546945855488 |
---|---|
author | Qamar, Farid Dobler, Gregory |
author_facet | Qamar, Farid Dobler, Gregory |
author_sort | Qamar, Farid |
collection | PubMed |
description | BACKGROUND: Vegetation spectral reflectance obtained with hyperspectral imaging (HSI) offer non-invasive means for the non-destructive study of their physiological status. The light intensity at visible and near-infrared wavelengths (VNIR, 0.4–1.0µm) captured by the sensor are composed of mixtures of spectral components that include the vegetation reflectance, atmospheric attenuation, top-of-atmosphere solar irradiance, and sensor artifacts. Common methods for the extraction of spectral reflectance from the at-sensor spectral radiance offer a trade-off between explicit knowledge of atmospheric conditions and concentrations, computational efficiency, and prediction accuracy, and are generally geared towards nadir pointing platforms. Therefore, a method is needed for the accurate extraction of vegetation reflectance from spectral radiance captured by ground-based remote sensors with a side-facing orientation towards the target, and a lack of knowledge of the atmospheric parameters. RESULTS: We propose a framework for obtaining the vegetation spectral reflectance from at-sensor spectral radiance, which relies on a time-dependent Encoder-Decoder Convolutional Neural Network trained and tested using simulated spectra generated from radiative transfer modeling. Simulated at-sensor spectral radiance are produced from combining 1440 unique simulated solar angles and atmospheric absorption profiles, and 1000 different spectral reflectance curves of vegetation with various health indicator values, together with sensor artifacts. Creating an ensemble of 10 models, each trained and tested on a separate 10% of the dataset, results in the prediction of the vegetation spectral reflectance with a testing r(2) of 98.1% (±0.4). This method produces consistently high performance with accuracies >90% for spectra with resolutions as low as 40 channels in VNIR each with 40 nm full width at half maximum (FWHM) and greater, and remains viable with accuracies >80% down to a resolution of 10 channels with 60 nm FWHM. When applied to real sensor obtained spectral radiance data, the predicted spectral reflectance curves showed general agreement and consistency with those corrected by the Compound Ratio method. CONCLUSIONS: We propose a method that allows for the accurate estimation of the vegetation spectral reflectance from ground-based HSI platforms with sufficient spectral resolution. It is capable of extracting the vegetation spectral reflectance at high accuracy in the absence of knowledge of the exact atmospheric compositions and conditions at time of capture, and the lack of available sensor-measured spectral radiance and their true ground-truth spectral reflectance profiles. |
format | Online Article Text |
id | pubmed-10385980 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-103859802023-07-30 Atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing Qamar, Farid Dobler, Gregory Plant Methods Methodology BACKGROUND: Vegetation spectral reflectance obtained with hyperspectral imaging (HSI) offer non-invasive means for the non-destructive study of their physiological status. The light intensity at visible and near-infrared wavelengths (VNIR, 0.4–1.0µm) captured by the sensor are composed of mixtures of spectral components that include the vegetation reflectance, atmospheric attenuation, top-of-atmosphere solar irradiance, and sensor artifacts. Common methods for the extraction of spectral reflectance from the at-sensor spectral radiance offer a trade-off between explicit knowledge of atmospheric conditions and concentrations, computational efficiency, and prediction accuracy, and are generally geared towards nadir pointing platforms. Therefore, a method is needed for the accurate extraction of vegetation reflectance from spectral radiance captured by ground-based remote sensors with a side-facing orientation towards the target, and a lack of knowledge of the atmospheric parameters. RESULTS: We propose a framework for obtaining the vegetation spectral reflectance from at-sensor spectral radiance, which relies on a time-dependent Encoder-Decoder Convolutional Neural Network trained and tested using simulated spectra generated from radiative transfer modeling. Simulated at-sensor spectral radiance are produced from combining 1440 unique simulated solar angles and atmospheric absorption profiles, and 1000 different spectral reflectance curves of vegetation with various health indicator values, together with sensor artifacts. Creating an ensemble of 10 models, each trained and tested on a separate 10% of the dataset, results in the prediction of the vegetation spectral reflectance with a testing r(2) of 98.1% (±0.4). This method produces consistently high performance with accuracies >90% for spectra with resolutions as low as 40 channels in VNIR each with 40 nm full width at half maximum (FWHM) and greater, and remains viable with accuracies >80% down to a resolution of 10 channels with 60 nm FWHM. When applied to real sensor obtained spectral radiance data, the predicted spectral reflectance curves showed general agreement and consistency with those corrected by the Compound Ratio method. CONCLUSIONS: We propose a method that allows for the accurate estimation of the vegetation spectral reflectance from ground-based HSI platforms with sufficient spectral resolution. It is capable of extracting the vegetation spectral reflectance at high accuracy in the absence of knowledge of the exact atmospheric compositions and conditions at time of capture, and the lack of available sensor-measured spectral radiance and their true ground-truth spectral reflectance profiles. BioMed Central 2023-07-29 /pmc/articles/PMC10385980/ /pubmed/37516859 http://dx.doi.org/10.1186/s13007-023-01046-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Methodology Qamar, Farid Dobler, Gregory Atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing |
title | Atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing |
title_full | Atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing |
title_fullStr | Atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing |
title_full_unstemmed | Atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing |
title_short | Atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing |
title_sort | atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385980/ https://www.ncbi.nlm.nih.gov/pubmed/37516859 http://dx.doi.org/10.1186/s13007-023-01046-6 |
work_keys_str_mv | AT qamarfarid atmosphericcorrectionofvegetationreflectancewithsimulationtraineddeeplearningforgroundbasedhyperspectralremotesensing AT doblergregory atmosphericcorrectionofvegetationreflectancewithsimulationtraineddeeplearningforgroundbasedhyperspectralremotesensing |