Cargando…
Atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing
BACKGROUND: Vegetation spectral reflectance obtained with hyperspectral imaging (HSI) offer non-invasive means for the non-destructive study of their physiological status. The light intensity at visible and near-infrared wavelengths (VNIR, 0.4–1.0µm) captured by the sensor are composed of mixtures o...
Autores principales: | Qamar, Farid, Dobler, Gregory |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385980/ https://www.ncbi.nlm.nih.gov/pubmed/37516859 http://dx.doi.org/10.1186/s13007-023-01046-6 |
Ejemplares similares
-
THEMS: an automated thermal and hyperspectral proximal sensing system for canopy reflectance, radiance and temperature
por: Woodgate, William, et al.
Publicado: (2020) -
A “Skylight” Simulator for HWIL Simulation of Hyperspectral Remote Sensing
por: Zhao, Huijie, et al.
Publicado: (2017) -
Wheat physiology predictor: predicting physiological traits in wheat from hyperspectral reflectance measurements using deep learning
por: Furbank, Robert T., et al.
Publicado: (2021) -
Vegetation responses to climate extremes recorded by remotely sensed atmospheric formaldehyde
por: Morfopoulos, Catherine, et al.
Publicado: (2021) -
Assessment of Polymer Atmospheric Correction Algorithm for Hyperspectral Remote Sensing Imagery over Coastal Waters
por: Soppa, Mariana A., et al.
Publicado: (2021)