Cargando…

The WC and CrC Coatings Deposited from Carbonyls Using PE CVD Method—Structure and Properties

This article presents a comparative study of WC and CrC coatings deposited by the plasma-enhanced chemical vapor method using the hexacarbonyls of W and Cr as precursors. The measured thicknesses of the WC and CrC coatings are equal to ca. 1.5 µm. The WC coating consists of microcolumns with a conic...

Descripción completa

Detalles Bibliográficos
Autores principales: Trebuňová, Marianna, Kottfer, Daniel, Kyziol, Karol, Kaňuchová, Mária, Medveď, Dávid, Džunda, Róbert, Kianicová, Marta, Rusinko, Lukáš, Breznická, Alena, Csatáryová, Mária
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385987/
https://www.ncbi.nlm.nih.gov/pubmed/37512319
http://dx.doi.org/10.3390/ma16145044
_version_ 1785081548744163328
author Trebuňová, Marianna
Kottfer, Daniel
Kyziol, Karol
Kaňuchová, Mária
Medveď, Dávid
Džunda, Róbert
Kianicová, Marta
Rusinko, Lukáš
Breznická, Alena
Csatáryová, Mária
author_facet Trebuňová, Marianna
Kottfer, Daniel
Kyziol, Karol
Kaňuchová, Mária
Medveď, Dávid
Džunda, Róbert
Kianicová, Marta
Rusinko, Lukáš
Breznická, Alena
Csatáryová, Mária
author_sort Trebuňová, Marianna
collection PubMed
description This article presents a comparative study of WC and CrC coatings deposited by the plasma-enhanced chemical vapor method using the hexacarbonyls of W and Cr as precursors. The measured thicknesses of the WC and CrC coatings are equal to ca. 1.5 µm. The WC coating consists of microcolumns with a conical end, with gaps between the microcolumns up to approximately 100 nm, and their structure is formed by nanoparticles in the shape of globules with a diameter of up to 10 nm. In the case of the CrC coating, a cauliflower structure with gaps ranging from 20 to 100 nm was achieved. The diameter of cauliflower grains is from 50 nm to 300 nm. The C content in the WC and CrC coating is 66.5 at.% and 75.5 at.%. The W content is 1.4 at.% and the Cr content in the CrC coating is 1.2 at.%. The hardness and Young’s modulus of the WC coating are equal to 9.2 ± 1.2 GPa 440.2 ± 14.2 GPa, respectively. The coefficients of friction and wear volume of the WC coating are equal to 0.7 and −1.6 × 10(6)/+3.3 × 10(6) µm(3), respectively. The hardness and Young’s modulus of the CrC coating are 7.5 ± 1.2 GPa and 280 ± 18.5 GPa, respectively. The coefficients of friction and wear volume of the CrC coating are 0.72 and −18.84 × 10(6)/+0.35 × 10(6) µm(3), respectively.
format Online
Article
Text
id pubmed-10385987
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103859872023-07-30 The WC and CrC Coatings Deposited from Carbonyls Using PE CVD Method—Structure and Properties Trebuňová, Marianna Kottfer, Daniel Kyziol, Karol Kaňuchová, Mária Medveď, Dávid Džunda, Róbert Kianicová, Marta Rusinko, Lukáš Breznická, Alena Csatáryová, Mária Materials (Basel) Article This article presents a comparative study of WC and CrC coatings deposited by the plasma-enhanced chemical vapor method using the hexacarbonyls of W and Cr as precursors. The measured thicknesses of the WC and CrC coatings are equal to ca. 1.5 µm. The WC coating consists of microcolumns with a conical end, with gaps between the microcolumns up to approximately 100 nm, and their structure is formed by nanoparticles in the shape of globules with a diameter of up to 10 nm. In the case of the CrC coating, a cauliflower structure with gaps ranging from 20 to 100 nm was achieved. The diameter of cauliflower grains is from 50 nm to 300 nm. The C content in the WC and CrC coating is 66.5 at.% and 75.5 at.%. The W content is 1.4 at.% and the Cr content in the CrC coating is 1.2 at.%. The hardness and Young’s modulus of the WC coating are equal to 9.2 ± 1.2 GPa 440.2 ± 14.2 GPa, respectively. The coefficients of friction and wear volume of the WC coating are equal to 0.7 and −1.6 × 10(6)/+3.3 × 10(6) µm(3), respectively. The hardness and Young’s modulus of the CrC coating are 7.5 ± 1.2 GPa and 280 ± 18.5 GPa, respectively. The coefficients of friction and wear volume of the CrC coating are 0.72 and −18.84 × 10(6)/+0.35 × 10(6) µm(3), respectively. MDPI 2023-07-17 /pmc/articles/PMC10385987/ /pubmed/37512319 http://dx.doi.org/10.3390/ma16145044 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Trebuňová, Marianna
Kottfer, Daniel
Kyziol, Karol
Kaňuchová, Mária
Medveď, Dávid
Džunda, Róbert
Kianicová, Marta
Rusinko, Lukáš
Breznická, Alena
Csatáryová, Mária
The WC and CrC Coatings Deposited from Carbonyls Using PE CVD Method—Structure and Properties
title The WC and CrC Coatings Deposited from Carbonyls Using PE CVD Method—Structure and Properties
title_full The WC and CrC Coatings Deposited from Carbonyls Using PE CVD Method—Structure and Properties
title_fullStr The WC and CrC Coatings Deposited from Carbonyls Using PE CVD Method—Structure and Properties
title_full_unstemmed The WC and CrC Coatings Deposited from Carbonyls Using PE CVD Method—Structure and Properties
title_short The WC and CrC Coatings Deposited from Carbonyls Using PE CVD Method—Structure and Properties
title_sort wc and crc coatings deposited from carbonyls using pe cvd method—structure and properties
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385987/
https://www.ncbi.nlm.nih.gov/pubmed/37512319
http://dx.doi.org/10.3390/ma16145044
work_keys_str_mv AT trebunovamarianna thewcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT kottferdaniel thewcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT kyziolkarol thewcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT kanuchovamaria thewcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT medveddavid thewcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT dzundarobert thewcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT kianicovamarta thewcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT rusinkolukas thewcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT breznickaalena thewcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT csataryovamaria thewcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT trebunovamarianna wcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT kottferdaniel wcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT kyziolkarol wcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT kanuchovamaria wcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT medveddavid wcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT dzundarobert wcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT kianicovamarta wcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT rusinkolukas wcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT breznickaalena wcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties
AT csataryovamaria wcandcrccoatingsdepositedfromcarbonylsusingpecvdmethodstructureandproperties