Cargando…
Probabilistic Semantic Mapping for Autonomous Driving in Urban Environments
Statistical learning techniques and increased computational power have facilitated the development of self-driving car technology. However, a limiting factor has been the high expense of scaling and maintaining high-definition (HD) maps. These maps are a crucial backbone for many approaches to self-...
Autores principales: | Zhang, Hengyuan, Venkatramani, Shashank, Paz, David, Li, Qinru, Xiang, Hao, Christensen, Henrik I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386185/ https://www.ncbi.nlm.nih.gov/pubmed/37514797 http://dx.doi.org/10.3390/s23146504 |
Ejemplares similares
-
Conditional Generative Models for Dynamic Trajectory Generation and Urban Driving
por: Paz, David, et al.
Publicado: (2023) -
Semantic Point Cloud Mapping of LiDAR Based on Probabilistic Uncertainty Modeling for Autonomous Driving
por: Cho, Sungjin, et al.
Publicado: (2020) -
Semantic Mapping for Autonomous Subsea Intervention
por: Vallicrosa, Guillem, et al.
Publicado: (2021) -
Autonomous Driving Control Based on the Technique of Semantic Segmentation
por: Tsai, Jichiang, et al.
Publicado: (2023) -
Understanding common human driving semantics for autonomous vehicles
por: Xia, Yingji, et al.
Publicado: (2023)