Cargando…
Predicting the Users’ Level of Engagement with a Smartphone Application for Smoking Cessation: Randomized Trial and Machine Learning Analysis
INTRODUCTION: Studies of the users’ engagement with smoking cessation application (apps) can help understand how these apps are used by smokers, in order to improve their reach and efficacy. OBJECTIVE: The present study aimed at identifying the best predictors of the users’ level of engagement with...
Autores principales: | Vera Cruz, Germano, Khazaal, Yasser, Etter, Jean-François |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
S. Karger AG
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10389794/ https://www.ncbi.nlm.nih.gov/pubmed/37166304 http://dx.doi.org/10.1159/000530111 |
Ejemplares similares
-
Predicting smoking cessation, reduction and relapse six months after using the Stop-Tabac app for smartphones: a machine learning analysis
por: Etter, Jean-François, et al.
Publicado: (2023) -
The Stop‐tabac smartphone application for smoking cessation: a randomized controlled trial
por: Etter, Jean‐François, et al.
Publicado: (2021) -
The Stop-Tabac smartphone application for smoking cessation: study protocol for a randomized controlled trial in the general population
por: Etter, Jean-François, et al.
Publicado: (2020) -
Assessment of the Popularity and Perceived Effectiveness of Smartphone Tools That Track and Limit Smartphone Use: Survey Study and Machine Learning Analysis
por: Aboujaoude, Elias, et al.
Publicado: (2022) -
Smartphone apps for mental health and wellbeing: A usage survey and
machine learning analysis of psychological and behavioral
predictors
por: Vera Cruz, Germano, et al.
Publicado: (2023)