Cargando…
Abnormal methylation in the NDUFA13 gene promoter of breast cancer cells breaks the cooperative DNA recognition by transcription factors
Selective DNA binding by transcription factors (TFs) is crucial for the correct regulation of DNA transcription. In healthy cells, promoters of active genes are hypomethylated. A single CpG methylation within a TF response element (RE) may change the binding preferences of the protein, thus causing...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392677/ https://www.ncbi.nlm.nih.gov/pubmed/37529293 http://dx.doi.org/10.1017/qrd.2022.21 |
_version_ | 1785083013471666176 |
---|---|
author | Hörberg, Johanna Hallbäck, Björn Moreau, Kevin Reymer, Anna |
author_facet | Hörberg, Johanna Hallbäck, Björn Moreau, Kevin Reymer, Anna |
author_sort | Hörberg, Johanna |
collection | PubMed |
description | Selective DNA binding by transcription factors (TFs) is crucial for the correct regulation of DNA transcription. In healthy cells, promoters of active genes are hypomethylated. A single CpG methylation within a TF response element (RE) may change the binding preferences of the protein, thus causing the dysregulation of transcription programs. Here, we investigate a molecular mechanism driving the downregulation of the NDUFA13 gene, due to hypermethylation, which is associated with multiple cancers. Using bioinformatic analyses of breast cancer cell line MCF7, we identify a hypermethylated region containing the binding sites of two TFs dimers, CEBPB and E2F1-DP1, located 130 b.p. from the gene transcription start site. All-atom extended MD simulations of wild type and methylated DNA alone and in complex with either one or both TFs dimers provide mechanistic insights into the cooperative asymmetric binding order of the two dimers; the CEBPB binding should occur first to facilitate the E2F1-DP1–DNA association. The CpG methylation within the E2F1-DP1 RE and the linker decrease the cooperativity effects and renders the E2F1-DP1 binding site less recognizable by the TF dimer. Taken together, the identified CpG methylation site may contribute to the downregulation of the NDUFA13 gene. |
format | Online Article Text |
id | pubmed-10392677 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Cambridge University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-103926772023-08-01 Abnormal methylation in the NDUFA13 gene promoter of breast cancer cells breaks the cooperative DNA recognition by transcription factors Hörberg, Johanna Hallbäck, Björn Moreau, Kevin Reymer, Anna QRB Discov Research Article Selective DNA binding by transcription factors (TFs) is crucial for the correct regulation of DNA transcription. In healthy cells, promoters of active genes are hypomethylated. A single CpG methylation within a TF response element (RE) may change the binding preferences of the protein, thus causing the dysregulation of transcription programs. Here, we investigate a molecular mechanism driving the downregulation of the NDUFA13 gene, due to hypermethylation, which is associated with multiple cancers. Using bioinformatic analyses of breast cancer cell line MCF7, we identify a hypermethylated region containing the binding sites of two TFs dimers, CEBPB and E2F1-DP1, located 130 b.p. from the gene transcription start site. All-atom extended MD simulations of wild type and methylated DNA alone and in complex with either one or both TFs dimers provide mechanistic insights into the cooperative asymmetric binding order of the two dimers; the CEBPB binding should occur first to facilitate the E2F1-DP1–DNA association. The CpG methylation within the E2F1-DP1 RE and the linker decrease the cooperativity effects and renders the E2F1-DP1 binding site less recognizable by the TF dimer. Taken together, the identified CpG methylation site may contribute to the downregulation of the NDUFA13 gene. Cambridge University Press 2022-11-28 /pmc/articles/PMC10392677/ /pubmed/37529293 http://dx.doi.org/10.1017/qrd.2022.21 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. |
spellingShingle | Research Article Hörberg, Johanna Hallbäck, Björn Moreau, Kevin Reymer, Anna Abnormal methylation in the NDUFA13 gene promoter of breast cancer cells breaks the cooperative DNA recognition by transcription factors |
title | Abnormal methylation in the NDUFA13 gene promoter of breast cancer cells breaks the cooperative DNA recognition by transcription factors |
title_full | Abnormal methylation in the NDUFA13 gene promoter of breast cancer cells breaks the cooperative DNA recognition by transcription factors |
title_fullStr | Abnormal methylation in the NDUFA13 gene promoter of breast cancer cells breaks the cooperative DNA recognition by transcription factors |
title_full_unstemmed | Abnormal methylation in the NDUFA13 gene promoter of breast cancer cells breaks the cooperative DNA recognition by transcription factors |
title_short | Abnormal methylation in the NDUFA13 gene promoter of breast cancer cells breaks the cooperative DNA recognition by transcription factors |
title_sort | abnormal methylation in the ndufa13 gene promoter of breast cancer cells breaks the cooperative dna recognition by transcription factors |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392677/ https://www.ncbi.nlm.nih.gov/pubmed/37529293 http://dx.doi.org/10.1017/qrd.2022.21 |
work_keys_str_mv | AT horbergjohanna abnormalmethylationinthendufa13genepromoterofbreastcancercellsbreaksthecooperativednarecognitionbytranscriptionfactors AT hallbackbjorn abnormalmethylationinthendufa13genepromoterofbreastcancercellsbreaksthecooperativednarecognitionbytranscriptionfactors AT moreaukevin abnormalmethylationinthendufa13genepromoterofbreastcancercellsbreaksthecooperativednarecognitionbytranscriptionfactors AT reymeranna abnormalmethylationinthendufa13genepromoterofbreastcancercellsbreaksthecooperativednarecognitionbytranscriptionfactors |