Cargando…
Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
To understand the clinical significance of the tumor microenvironment (TME), it is essential to study the interactions between malignant and non-malignant cells in clinical specimens. Here, we established a computational framework for a multiplex imaging system to comprehensively characterize spatia...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393746/ https://www.ncbi.nlm.nih.gov/pubmed/37539043 http://dx.doi.org/10.1016/j.isci.2023.107331 |
_version_ | 1785083210068131840 |
---|---|
author | Roemer, Margaretha G.M. van de Brug, Tim Bosch, Erik Berry, Daniella Hijmering, Nathalie Stathi, Phylicia Weijers, Karin Doorduijn, Jeannette Bromberg, Jacoline van de Wiel, Mark Ylstra, Bauke de Jong, Daphne Kim, Yongsoo |
author_facet | Roemer, Margaretha G.M. van de Brug, Tim Bosch, Erik Berry, Daniella Hijmering, Nathalie Stathi, Phylicia Weijers, Karin Doorduijn, Jeannette Bromberg, Jacoline van de Wiel, Mark Ylstra, Bauke de Jong, Daphne Kim, Yongsoo |
author_sort | Roemer, Margaretha G.M. |
collection | PubMed |
description | To understand the clinical significance of the tumor microenvironment (TME), it is essential to study the interactions between malignant and non-malignant cells in clinical specimens. Here, we established a computational framework for a multiplex imaging system to comprehensively characterize spatial contexts of the TME at multiple scales, including close and long-distance spatial interactions between cell type pairs. We applied this framework to a total of 1,393 multiplex imaging data newly generated from 88 primary central nervous system lymphomas with complete follow-up data and identified significant prognostic subgroups mainly shaped by the spatial context. A supervised analysis confirmed a significant contribution of spatial context in predicting patient survival. In particular, we found an opposite prognostic value of macrophage infiltration depending on its proximity to specific cell types. Altogether, we provide a comprehensive framework to analyze spatial cellular interaction that can be broadly applied to other technologies and tumor contexts. |
format | Online Article Text |
id | pubmed-10393746 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-103937462023-08-03 Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma Roemer, Margaretha G.M. van de Brug, Tim Bosch, Erik Berry, Daniella Hijmering, Nathalie Stathi, Phylicia Weijers, Karin Doorduijn, Jeannette Bromberg, Jacoline van de Wiel, Mark Ylstra, Bauke de Jong, Daphne Kim, Yongsoo iScience Article To understand the clinical significance of the tumor microenvironment (TME), it is essential to study the interactions between malignant and non-malignant cells in clinical specimens. Here, we established a computational framework for a multiplex imaging system to comprehensively characterize spatial contexts of the TME at multiple scales, including close and long-distance spatial interactions between cell type pairs. We applied this framework to a total of 1,393 multiplex imaging data newly generated from 88 primary central nervous system lymphomas with complete follow-up data and identified significant prognostic subgroups mainly shaped by the spatial context. A supervised analysis confirmed a significant contribution of spatial context in predicting patient survival. In particular, we found an opposite prognostic value of macrophage infiltration depending on its proximity to specific cell types. Altogether, we provide a comprehensive framework to analyze spatial cellular interaction that can be broadly applied to other technologies and tumor contexts. Elsevier 2023-07-10 /pmc/articles/PMC10393746/ /pubmed/37539043 http://dx.doi.org/10.1016/j.isci.2023.107331 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Roemer, Margaretha G.M. van de Brug, Tim Bosch, Erik Berry, Daniella Hijmering, Nathalie Stathi, Phylicia Weijers, Karin Doorduijn, Jeannette Bromberg, Jacoline van de Wiel, Mark Ylstra, Bauke de Jong, Daphne Kim, Yongsoo Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma |
title | Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma |
title_full | Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma |
title_fullStr | Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma |
title_full_unstemmed | Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma |
title_short | Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma |
title_sort | multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393746/ https://www.ncbi.nlm.nih.gov/pubmed/37539043 http://dx.doi.org/10.1016/j.isci.2023.107331 |
work_keys_str_mv | AT roemermargarethagm multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma AT vandebrugtim multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma AT boscherik multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma AT berrydaniella multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma AT hijmeringnathalie multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma AT stathiphylicia multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma AT weijerskarin multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma AT doorduijnjeannette multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma AT brombergjacoline multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma AT vandewielmark multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma AT ylstrabauke multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma AT dejongdaphne multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma AT kimyongsoo multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma |