Cargando…

Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma

To understand the clinical significance of the tumor microenvironment (TME), it is essential to study the interactions between malignant and non-malignant cells in clinical specimens. Here, we established a computational framework for a multiplex imaging system to comprehensively characterize spatia...

Descripción completa

Detalles Bibliográficos
Autores principales: Roemer, Margaretha G.M., van de Brug, Tim, Bosch, Erik, Berry, Daniella, Hijmering, Nathalie, Stathi, Phylicia, Weijers, Karin, Doorduijn, Jeannette, Bromberg, Jacoline, van de Wiel, Mark, Ylstra, Bauke, de Jong, Daphne, Kim, Yongsoo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393746/
https://www.ncbi.nlm.nih.gov/pubmed/37539043
http://dx.doi.org/10.1016/j.isci.2023.107331
_version_ 1785083210068131840
author Roemer, Margaretha G.M.
van de Brug, Tim
Bosch, Erik
Berry, Daniella
Hijmering, Nathalie
Stathi, Phylicia
Weijers, Karin
Doorduijn, Jeannette
Bromberg, Jacoline
van de Wiel, Mark
Ylstra, Bauke
de Jong, Daphne
Kim, Yongsoo
author_facet Roemer, Margaretha G.M.
van de Brug, Tim
Bosch, Erik
Berry, Daniella
Hijmering, Nathalie
Stathi, Phylicia
Weijers, Karin
Doorduijn, Jeannette
Bromberg, Jacoline
van de Wiel, Mark
Ylstra, Bauke
de Jong, Daphne
Kim, Yongsoo
author_sort Roemer, Margaretha G.M.
collection PubMed
description To understand the clinical significance of the tumor microenvironment (TME), it is essential to study the interactions between malignant and non-malignant cells in clinical specimens. Here, we established a computational framework for a multiplex imaging system to comprehensively characterize spatial contexts of the TME at multiple scales, including close and long-distance spatial interactions between cell type pairs. We applied this framework to a total of 1,393 multiplex imaging data newly generated from 88 primary central nervous system lymphomas with complete follow-up data and identified significant prognostic subgroups mainly shaped by the spatial context. A supervised analysis confirmed a significant contribution of spatial context in predicting patient survival. In particular, we found an opposite prognostic value of macrophage infiltration depending on its proximity to specific cell types. Altogether, we provide a comprehensive framework to analyze spatial cellular interaction that can be broadly applied to other technologies and tumor contexts.
format Online
Article
Text
id pubmed-10393746
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-103937462023-08-03 Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma Roemer, Margaretha G.M. van de Brug, Tim Bosch, Erik Berry, Daniella Hijmering, Nathalie Stathi, Phylicia Weijers, Karin Doorduijn, Jeannette Bromberg, Jacoline van de Wiel, Mark Ylstra, Bauke de Jong, Daphne Kim, Yongsoo iScience Article To understand the clinical significance of the tumor microenvironment (TME), it is essential to study the interactions between malignant and non-malignant cells in clinical specimens. Here, we established a computational framework for a multiplex imaging system to comprehensively characterize spatial contexts of the TME at multiple scales, including close and long-distance spatial interactions between cell type pairs. We applied this framework to a total of 1,393 multiplex imaging data newly generated from 88 primary central nervous system lymphomas with complete follow-up data and identified significant prognostic subgroups mainly shaped by the spatial context. A supervised analysis confirmed a significant contribution of spatial context in predicting patient survival. In particular, we found an opposite prognostic value of macrophage infiltration depending on its proximity to specific cell types. Altogether, we provide a comprehensive framework to analyze spatial cellular interaction that can be broadly applied to other technologies and tumor contexts. Elsevier 2023-07-10 /pmc/articles/PMC10393746/ /pubmed/37539043 http://dx.doi.org/10.1016/j.isci.2023.107331 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Roemer, Margaretha G.M.
van de Brug, Tim
Bosch, Erik
Berry, Daniella
Hijmering, Nathalie
Stathi, Phylicia
Weijers, Karin
Doorduijn, Jeannette
Bromberg, Jacoline
van de Wiel, Mark
Ylstra, Bauke
de Jong, Daphne
Kim, Yongsoo
Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
title Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
title_full Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
title_fullStr Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
title_full_unstemmed Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
title_short Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
title_sort multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393746/
https://www.ncbi.nlm.nih.gov/pubmed/37539043
http://dx.doi.org/10.1016/j.isci.2023.107331
work_keys_str_mv AT roemermargarethagm multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT vandebrugtim multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT boscherik multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT berrydaniella multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT hijmeringnathalie multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT stathiphylicia multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT weijerskarin multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT doorduijnjeannette multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT brombergjacoline multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT vandewielmark multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT ylstrabauke multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT dejongdaphne multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma
AT kimyongsoo multiscalespatialmodelingofimmunecelldistributionsenablessurvivalpredictioninprimarycentralnervoussystemlymphoma