Cargando…

14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion

AIM: To explore whether 14, 15‐EET regulates mitochondrial dynamics to exert neuroprotective effects after cerebral ischemia–reperfusion and its underlying mechanisms. METHODS: The mouse middle cerebral artery occlusion reperfusion model was used to observe brain infarct volume and neuronal apoptosi...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Jing, Chen, Yiang, Li, Jinyuan, Yan, Shuo, Wang, Zenan, Deng, Xinyu, Feng, Ke, Zhang, Yanshuo, Chen, Chunrong, Geng, Huixia, Wang, Yanming, Wang, Lai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401172/
https://www.ncbi.nlm.nih.gov/pubmed/37017405
http://dx.doi.org/10.1111/cns.14198
_version_ 1785084598532702208
author Tang, Jing
Chen, Yiang
Li, Jinyuan
Yan, Shuo
Wang, Zenan
Deng, Xinyu
Feng, Ke
Zhang, Yanshuo
Chen, Chunrong
Geng, Huixia
Wang, Yanming
Wang, Lai
author_facet Tang, Jing
Chen, Yiang
Li, Jinyuan
Yan, Shuo
Wang, Zenan
Deng, Xinyu
Feng, Ke
Zhang, Yanshuo
Chen, Chunrong
Geng, Huixia
Wang, Yanming
Wang, Lai
author_sort Tang, Jing
collection PubMed
description AIM: To explore whether 14, 15‐EET regulates mitochondrial dynamics to exert neuroprotective effects after cerebral ischemia–reperfusion and its underlying mechanisms. METHODS: The mouse middle cerebral artery occlusion reperfusion model was used to observe brain infarct volume and neuronal apoptosis by TTC staining and Tunel assay, modified neurological severity score to detect neurological impairment, HE staining and Nissl staining to observe neuron damage, western blot and immunofluorescence methods to detect the expression of mitochondrial dynamics‐related proteins, transmission electron microscopy, and Golgi‐Cox staining to detect mitochondrial morphology and neuronal dendritic spines. RESULTS: 14, 15‐EET reduced the neuronal apoptosis and cerebral infarction volume induced by middle cerebral artery occlusion reperfusion (MCAO/R), inhibited the degradation of dendritic spines, maintained the structural integrity of neurons, and alleviated neurological impairment. Cerebral ischemia–reperfusion induces mitochondrial dynamics disorders, upregulates the expression of the mitochondrial division protein Fis 1, and inhibits the expression of mitochondrial fusion proteins MFN1, MFN2, and OPA1, while 14, 15‐EET treatment reverses this process. Mechanistic studies have shown that 14, 15‐EET promotes the phosphorylation of AMPK, upregulates the expression of SIRT1 and phosphorylation of FoxO1, thereby inhibiting mitochondrial division and promoting mitochondrial fusion, preserving mitochondrial dynamics, maintaining neuronal morphological and structural integrity, and alleviating neurological impairment induced by middle cerebral artery occlusion reperfusion. Compound C treatment diminishes the neuroprotective effect of 14, 15‐EET following MCAO/R in mice. CONCLUSION: This study elucidates the novel neuroprotective mechanism of 14, 15‐EET, providing a novel approach for the development of drugs based on mitochondrial dynamics.
format Online
Article
Text
id pubmed-10401172
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-104011722023-08-05 14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion Tang, Jing Chen, Yiang Li, Jinyuan Yan, Shuo Wang, Zenan Deng, Xinyu Feng, Ke Zhang, Yanshuo Chen, Chunrong Geng, Huixia Wang, Yanming Wang, Lai CNS Neurosci Ther Original Articles AIM: To explore whether 14, 15‐EET regulates mitochondrial dynamics to exert neuroprotective effects after cerebral ischemia–reperfusion and its underlying mechanisms. METHODS: The mouse middle cerebral artery occlusion reperfusion model was used to observe brain infarct volume and neuronal apoptosis by TTC staining and Tunel assay, modified neurological severity score to detect neurological impairment, HE staining and Nissl staining to observe neuron damage, western blot and immunofluorescence methods to detect the expression of mitochondrial dynamics‐related proteins, transmission electron microscopy, and Golgi‐Cox staining to detect mitochondrial morphology and neuronal dendritic spines. RESULTS: 14, 15‐EET reduced the neuronal apoptosis and cerebral infarction volume induced by middle cerebral artery occlusion reperfusion (MCAO/R), inhibited the degradation of dendritic spines, maintained the structural integrity of neurons, and alleviated neurological impairment. Cerebral ischemia–reperfusion induces mitochondrial dynamics disorders, upregulates the expression of the mitochondrial division protein Fis 1, and inhibits the expression of mitochondrial fusion proteins MFN1, MFN2, and OPA1, while 14, 15‐EET treatment reverses this process. Mechanistic studies have shown that 14, 15‐EET promotes the phosphorylation of AMPK, upregulates the expression of SIRT1 and phosphorylation of FoxO1, thereby inhibiting mitochondrial division and promoting mitochondrial fusion, preserving mitochondrial dynamics, maintaining neuronal morphological and structural integrity, and alleviating neurological impairment induced by middle cerebral artery occlusion reperfusion. Compound C treatment diminishes the neuroprotective effect of 14, 15‐EET following MCAO/R in mice. CONCLUSION: This study elucidates the novel neuroprotective mechanism of 14, 15‐EET, providing a novel approach for the development of drugs based on mitochondrial dynamics. John Wiley and Sons Inc. 2023-04-05 /pmc/articles/PMC10401172/ /pubmed/37017405 http://dx.doi.org/10.1111/cns.14198 Text en © 2023 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Tang, Jing
Chen, Yiang
Li, Jinyuan
Yan, Shuo
Wang, Zenan
Deng, Xinyu
Feng, Ke
Zhang, Yanshuo
Chen, Chunrong
Geng, Huixia
Wang, Yanming
Wang, Lai
14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion
title 14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion
title_full 14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion
title_fullStr 14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion
title_full_unstemmed 14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion
title_short 14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion
title_sort 14, 15‐eet alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via ampk/sirt1/foxo1 signal pathways in mice with cerebral ischemia reperfusion
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401172/
https://www.ncbi.nlm.nih.gov/pubmed/37017405
http://dx.doi.org/10.1111/cns.14198
work_keys_str_mv AT tangjing 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion
AT chenyiang 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion
AT lijinyuan 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion
AT yanshuo 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion
AT wangzenan 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion
AT dengxinyu 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion
AT fengke 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion
AT zhangyanshuo 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion
AT chenchunrong 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion
AT genghuixia 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion
AT wangyanming 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion
AT wanglai 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion