Cargando…
14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion
AIM: To explore whether 14, 15‐EET regulates mitochondrial dynamics to exert neuroprotective effects after cerebral ischemia–reperfusion and its underlying mechanisms. METHODS: The mouse middle cerebral artery occlusion reperfusion model was used to observe brain infarct volume and neuronal apoptosi...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401172/ https://www.ncbi.nlm.nih.gov/pubmed/37017405 http://dx.doi.org/10.1111/cns.14198 |
_version_ | 1785084598532702208 |
---|---|
author | Tang, Jing Chen, Yiang Li, Jinyuan Yan, Shuo Wang, Zenan Deng, Xinyu Feng, Ke Zhang, Yanshuo Chen, Chunrong Geng, Huixia Wang, Yanming Wang, Lai |
author_facet | Tang, Jing Chen, Yiang Li, Jinyuan Yan, Shuo Wang, Zenan Deng, Xinyu Feng, Ke Zhang, Yanshuo Chen, Chunrong Geng, Huixia Wang, Yanming Wang, Lai |
author_sort | Tang, Jing |
collection | PubMed |
description | AIM: To explore whether 14, 15‐EET regulates mitochondrial dynamics to exert neuroprotective effects after cerebral ischemia–reperfusion and its underlying mechanisms. METHODS: The mouse middle cerebral artery occlusion reperfusion model was used to observe brain infarct volume and neuronal apoptosis by TTC staining and Tunel assay, modified neurological severity score to detect neurological impairment, HE staining and Nissl staining to observe neuron damage, western blot and immunofluorescence methods to detect the expression of mitochondrial dynamics‐related proteins, transmission electron microscopy, and Golgi‐Cox staining to detect mitochondrial morphology and neuronal dendritic spines. RESULTS: 14, 15‐EET reduced the neuronal apoptosis and cerebral infarction volume induced by middle cerebral artery occlusion reperfusion (MCAO/R), inhibited the degradation of dendritic spines, maintained the structural integrity of neurons, and alleviated neurological impairment. Cerebral ischemia–reperfusion induces mitochondrial dynamics disorders, upregulates the expression of the mitochondrial division protein Fis 1, and inhibits the expression of mitochondrial fusion proteins MFN1, MFN2, and OPA1, while 14, 15‐EET treatment reverses this process. Mechanistic studies have shown that 14, 15‐EET promotes the phosphorylation of AMPK, upregulates the expression of SIRT1 and phosphorylation of FoxO1, thereby inhibiting mitochondrial division and promoting mitochondrial fusion, preserving mitochondrial dynamics, maintaining neuronal morphological and structural integrity, and alleviating neurological impairment induced by middle cerebral artery occlusion reperfusion. Compound C treatment diminishes the neuroprotective effect of 14, 15‐EET following MCAO/R in mice. CONCLUSION: This study elucidates the novel neuroprotective mechanism of 14, 15‐EET, providing a novel approach for the development of drugs based on mitochondrial dynamics. |
format | Online Article Text |
id | pubmed-10401172 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104011722023-08-05 14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion Tang, Jing Chen, Yiang Li, Jinyuan Yan, Shuo Wang, Zenan Deng, Xinyu Feng, Ke Zhang, Yanshuo Chen, Chunrong Geng, Huixia Wang, Yanming Wang, Lai CNS Neurosci Ther Original Articles AIM: To explore whether 14, 15‐EET regulates mitochondrial dynamics to exert neuroprotective effects after cerebral ischemia–reperfusion and its underlying mechanisms. METHODS: The mouse middle cerebral artery occlusion reperfusion model was used to observe brain infarct volume and neuronal apoptosis by TTC staining and Tunel assay, modified neurological severity score to detect neurological impairment, HE staining and Nissl staining to observe neuron damage, western blot and immunofluorescence methods to detect the expression of mitochondrial dynamics‐related proteins, transmission electron microscopy, and Golgi‐Cox staining to detect mitochondrial morphology and neuronal dendritic spines. RESULTS: 14, 15‐EET reduced the neuronal apoptosis and cerebral infarction volume induced by middle cerebral artery occlusion reperfusion (MCAO/R), inhibited the degradation of dendritic spines, maintained the structural integrity of neurons, and alleviated neurological impairment. Cerebral ischemia–reperfusion induces mitochondrial dynamics disorders, upregulates the expression of the mitochondrial division protein Fis 1, and inhibits the expression of mitochondrial fusion proteins MFN1, MFN2, and OPA1, while 14, 15‐EET treatment reverses this process. Mechanistic studies have shown that 14, 15‐EET promotes the phosphorylation of AMPK, upregulates the expression of SIRT1 and phosphorylation of FoxO1, thereby inhibiting mitochondrial division and promoting mitochondrial fusion, preserving mitochondrial dynamics, maintaining neuronal morphological and structural integrity, and alleviating neurological impairment induced by middle cerebral artery occlusion reperfusion. Compound C treatment diminishes the neuroprotective effect of 14, 15‐EET following MCAO/R in mice. CONCLUSION: This study elucidates the novel neuroprotective mechanism of 14, 15‐EET, providing a novel approach for the development of drugs based on mitochondrial dynamics. John Wiley and Sons Inc. 2023-04-05 /pmc/articles/PMC10401172/ /pubmed/37017405 http://dx.doi.org/10.1111/cns.14198 Text en © 2023 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Tang, Jing Chen, Yiang Li, Jinyuan Yan, Shuo Wang, Zenan Deng, Xinyu Feng, Ke Zhang, Yanshuo Chen, Chunrong Geng, Huixia Wang, Yanming Wang, Lai 14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion |
title | 14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion |
title_full | 14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion |
title_fullStr | 14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion |
title_full_unstemmed | 14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion |
title_short | 14, 15‐EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion |
title_sort | 14, 15‐eet alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via ampk/sirt1/foxo1 signal pathways in mice with cerebral ischemia reperfusion |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401172/ https://www.ncbi.nlm.nih.gov/pubmed/37017405 http://dx.doi.org/10.1111/cns.14198 |
work_keys_str_mv | AT tangjing 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion AT chenyiang 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion AT lijinyuan 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion AT yanshuo 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion AT wangzenan 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion AT dengxinyu 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion AT fengke 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion AT zhangyanshuo 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion AT chenchunrong 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion AT genghuixia 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion AT wangyanming 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion AT wanglai 1415eetalleviatesneurologicalimpairmentthroughmaintainingmitochondrialdynamicsequilibriumviaampksirt1foxo1signalpathwaysinmicewithcerebralischemiareperfusion |