Cargando…
Predicting Relative Populations of Protein Conformations without a Physics Engine Using AlphaFold2
This paper presents a novel approach for predicting the relative populations of protein conformations using AlphaFold 2, an AI-powered method that has revolutionized biology by enabling the accurate prediction of protein structures. While AlphaFold 2 has shown exceptional accuracy and speed, it is d...
Autores principales: | da Silva, Gabriel Monteiro, Cui, Jennifer Y., Dalgarno, David C., Lisi, George P., Rubenstein, Brenda M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402055/ https://www.ncbi.nlm.nih.gov/pubmed/37546747 http://dx.doi.org/10.1101/2023.07.25.550545 |
Ejemplares similares
-
Approximating conformational Boltzmann distributions with AlphaFold2 predictions
por: Brown, Benjamin P., et al.
Publicado: (2023) -
Sampling alternative conformational states of transporters and receptors with AlphaFold2
por: del Alamo, Diego, et al.
Publicado: (2022) -
AlphaFold and the future of structural biology
por: Read, Randy J., et al.
Publicado: (2023) -
Investigating the conformational landscape of AlphaFold2-predicted protein kinase structures
por: Al-Masri, Carmen, et al.
Publicado: (2023) -
Exploring kinase DFG loop conformational stability with AlphaFold2-RAVE
por: Vani, Bodhi P., et al.
Publicado: (2023)