Cargando…

Small EV in plasma of triple negative breast cancer patients induce intrinsic apoptosis in activated T cells

Small extracellular vesicles (sEV) in TNBC patients’ plasma promote T cell dysfunction and tumor progression. Here we show that tumor cell-derived exosomes (TEX) carrying surface PDL-1, PD-1, Fas, FasL, TRAIL, CTLA-4 and TGF-β1 induce apoptosis of CD8(+)T and CD4(+)T cells but spare B and NK cells....

Descripción completa

Detalles Bibliográficos
Autores principales: Mondal, Sujan Kumar, Haas, Derick, Han, Jie, Whiteside, Theresa L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403597/
https://www.ncbi.nlm.nih.gov/pubmed/37542121
http://dx.doi.org/10.1038/s42003-023-05169-3
Descripción
Sumario:Small extracellular vesicles (sEV) in TNBC patients’ plasma promote T cell dysfunction and tumor progression. Here we show that tumor cell-derived exosomes (TEX) carrying surface PDL-1, PD-1, Fas, FasL, TRAIL, CTLA-4 and TGF-β1 induce apoptosis of CD8(+)T and CD4(+)T cells but spare B and NK cells. Inhibitors blocking TEX-induce receptor/ligand signals and TEX pretreatments with proteinase K or heat fail to prevent T cell apoptosis. Cytochalasin D, Dynosore or Pit Stop 2, partly inhibit TEX uptake but do not prevent T cell apoptosis. TEX entry into T cells induces cytochrome C and Smac release from mitochondria and caspase-3 and PARP cleavage in the cytosol. Expression of survival proteins is reduced in T cells undergoing apoptosis. Independently of external death receptor signaling, TEX entry into T cells induces mitochondrial stress, initiating relentless intrinsic apoptosis, which is responsible for death of activated T cells in the tumor-bearing hosts. The abundance of TEX in cancer plasma represents a danger for adoptively transferred T cells, limiting their therapeutic potential.