Cargando…
Using interpretable boosting algorithms for modeling environmental and agricultural data
We describe how interpretable boosting algorithms based on ridge-regularized generalized linear models can be used to analyze high-dimensional environmental data. We illustrate this by using environmental, social, human and biophysical data to predict the financial vulnerability of farmers in Chile...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406907/ https://www.ncbi.nlm.nih.gov/pubmed/37550426 http://dx.doi.org/10.1038/s41598-023-39918-5 |