Cargando…
Using interpretable boosting algorithms for modeling environmental and agricultural data
We describe how interpretable boosting algorithms based on ridge-regularized generalized linear models can be used to analyze high-dimensional environmental data. We illustrate this by using environmental, social, human and biophysical data to predict the financial vulnerability of farmers in Chile...
Autores principales: | Obster, Fabian, Heumann, Christian, Bohle, Heidi, Pechan, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406907/ https://www.ncbi.nlm.nih.gov/pubmed/37550426 http://dx.doi.org/10.1038/s41598-023-39918-5 |
Ejemplares similares
-
Adaptive boosting of random forest algorithm for automatic petrophysical interpretation of well logs
por: Srivardhan, V.
Publicado: (2022) -
Clustering compositional data using Dirichlet mixture model
por: Pal, Samyajoy, et al.
Publicado: (2022) -
Exolaccase-boosted humification for agricultural applications
por: Chu, Hailing, et al.
Publicado: (2022) -
An interpretable boosting model to predict side effects of analgesics for osteoarthritis
por: Liu, Liangliang, et al.
Publicado: (2018) -
Diabetes classification model based on boosting algorithms
por: Chen, Peihua, et al.
Publicado: (2018)