Cargando…
Activin E–ACVR1C cross talk controls energy storage via suppression of adipose lipolysis in mice
Body fat distribution is a heritable risk factor for cardiovascular and metabolic disease. In humans, rare Inhibin beta E (INHBE, activin E) loss-of-function variants are associated with a lower waist-to-hip ratio and protection from type 2 diabetes. Hepatic fatty acid sensing promotes INHBE express...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410708/ https://www.ncbi.nlm.nih.gov/pubmed/37523551 http://dx.doi.org/10.1073/pnas.2309967120 |
_version_ | 1785086516290125824 |
---|---|
author | Adam, Rene C. Pryce, Dwaine S. Lee, Joseph S. Zhao, Yuanqi Mintah, Ivory J. Min, Soo Halasz, Gabor Mastaitis, Jason Atwal, Gurinder S. Aykul, Senem Idone, Vincent Economides, Aris N. Lotta, Luca A. Murphy, Andrew J. Yancopoulos, George D. Sleeman, Mark W. Gusarova, Viktoria |
author_facet | Adam, Rene C. Pryce, Dwaine S. Lee, Joseph S. Zhao, Yuanqi Mintah, Ivory J. Min, Soo Halasz, Gabor Mastaitis, Jason Atwal, Gurinder S. Aykul, Senem Idone, Vincent Economides, Aris N. Lotta, Luca A. Murphy, Andrew J. Yancopoulos, George D. Sleeman, Mark W. Gusarova, Viktoria |
author_sort | Adam, Rene C. |
collection | PubMed |
description | Body fat distribution is a heritable risk factor for cardiovascular and metabolic disease. In humans, rare Inhibin beta E (INHBE, activin E) loss-of-function variants are associated with a lower waist-to-hip ratio and protection from type 2 diabetes. Hepatic fatty acid sensing promotes INHBE expression during fasting and in obese individuals, yet it is unclear how the hepatokine activin E governs body shape and energy metabolism. Here, we uncover activin E as a regulator of adipose energy storage. By suppressing β-agonist-induced lipolysis, activin E promotes fat accumulation and adipocyte hypertrophy and contributes to adipose dysfunction in mice. Mechanistically, we demonstrate that activin E elicits its effect on adipose tissue through ACVR1C, activating SMAD2/3 signaling and suppressing PPARG target genes. Conversely, loss of activin E or ACVR1C in mice increases fat utilization, lowers adiposity, and drives PPARG-regulated gene signatures indicative of healthy adipose function. Our studies identify activin E–ACVR1C as a metabolic rheostat promoting liver–adipose cross talk to restrain excessive fat breakdown and preserve fat mass during prolonged fasting, a mechanism that is maladaptive in obese individuals. |
format | Online Article Text |
id | pubmed-10410708 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-104107082023-08-10 Activin E–ACVR1C cross talk controls energy storage via suppression of adipose lipolysis in mice Adam, Rene C. Pryce, Dwaine S. Lee, Joseph S. Zhao, Yuanqi Mintah, Ivory J. Min, Soo Halasz, Gabor Mastaitis, Jason Atwal, Gurinder S. Aykul, Senem Idone, Vincent Economides, Aris N. Lotta, Luca A. Murphy, Andrew J. Yancopoulos, George D. Sleeman, Mark W. Gusarova, Viktoria Proc Natl Acad Sci U S A Biological Sciences Body fat distribution is a heritable risk factor for cardiovascular and metabolic disease. In humans, rare Inhibin beta E (INHBE, activin E) loss-of-function variants are associated with a lower waist-to-hip ratio and protection from type 2 diabetes. Hepatic fatty acid sensing promotes INHBE expression during fasting and in obese individuals, yet it is unclear how the hepatokine activin E governs body shape and energy metabolism. Here, we uncover activin E as a regulator of adipose energy storage. By suppressing β-agonist-induced lipolysis, activin E promotes fat accumulation and adipocyte hypertrophy and contributes to adipose dysfunction in mice. Mechanistically, we demonstrate that activin E elicits its effect on adipose tissue through ACVR1C, activating SMAD2/3 signaling and suppressing PPARG target genes. Conversely, loss of activin E or ACVR1C in mice increases fat utilization, lowers adiposity, and drives PPARG-regulated gene signatures indicative of healthy adipose function. Our studies identify activin E–ACVR1C as a metabolic rheostat promoting liver–adipose cross talk to restrain excessive fat breakdown and preserve fat mass during prolonged fasting, a mechanism that is maladaptive in obese individuals. National Academy of Sciences 2023-07-31 2023-08-08 /pmc/articles/PMC10410708/ /pubmed/37523551 http://dx.doi.org/10.1073/pnas.2309967120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Adam, Rene C. Pryce, Dwaine S. Lee, Joseph S. Zhao, Yuanqi Mintah, Ivory J. Min, Soo Halasz, Gabor Mastaitis, Jason Atwal, Gurinder S. Aykul, Senem Idone, Vincent Economides, Aris N. Lotta, Luca A. Murphy, Andrew J. Yancopoulos, George D. Sleeman, Mark W. Gusarova, Viktoria Activin E–ACVR1C cross talk controls energy storage via suppression of adipose lipolysis in mice |
title | Activin E–ACVR1C cross talk controls energy storage via suppression of adipose lipolysis in mice |
title_full | Activin E–ACVR1C cross talk controls energy storage via suppression of adipose lipolysis in mice |
title_fullStr | Activin E–ACVR1C cross talk controls energy storage via suppression of adipose lipolysis in mice |
title_full_unstemmed | Activin E–ACVR1C cross talk controls energy storage via suppression of adipose lipolysis in mice |
title_short | Activin E–ACVR1C cross talk controls energy storage via suppression of adipose lipolysis in mice |
title_sort | activin e–acvr1c cross talk controls energy storage via suppression of adipose lipolysis in mice |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410708/ https://www.ncbi.nlm.nih.gov/pubmed/37523551 http://dx.doi.org/10.1073/pnas.2309967120 |
work_keys_str_mv | AT adamrenec activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT prycedwaines activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT leejosephs activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT zhaoyuanqi activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT mintahivoryj activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT minsoo activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT halaszgabor activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT mastaitisjason activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT atwalgurinders activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT aykulsenem activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT idonevincent activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT economidesarisn activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT lottalucaa activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT murphyandrewj activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT yancopoulosgeorged activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT sleemanmarkw activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice AT gusarovaviktoria activineacvr1ccrosstalkcontrolsenergystorageviasuppressionofadiposelipolysisinmice |