Cargando…
Mega-scale experimental analysis of protein folding stability in biology and design
Advances in DNA sequencing and machine learning are providing insights into protein sequences and structures on an enormous scale(1). However, the energetics driving folding are invisible in these structures and remain largely unknown(2). The hidden thermodynamics of folding can drive disease(3,4),...
Autores principales: | Tsuboyama, Kotaro, Dauparas, Justas, Chen, Jonathan, Laine, Elodie, Mohseni Behbahani, Yasser, Weinstein, Jonathan J., Mangan, Niall M., Ovchinnikov, Sergey, Rocklin, Gabriel J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412457/ https://www.ncbi.nlm.nih.gov/pubmed/37468638 http://dx.doi.org/10.1038/s41586-023-06328-6 |
Ejemplares similares
-
Dissecting the stability determinants of a challenging de novo protein fold using massively parallel design and experimentation
por: Kim, Tae-Eun, et al.
Publicado: (2022) -
Deep Local Analysis deconstructs protein–protein interfaces and accurately estimates binding affinity changes upon mutation
por: Mohseni Behbahani, Yasser, et al.
Publicado: (2023) -
Deep Local Analysis evaluates protein docking conformations with locally oriented cubes
por: Mohseni Behbahani, Yasser, et al.
Publicado: (2022) -
From complete cross-docking to partners identification and binding sites predictions
por: Dequeker, Chloé, et al.
Publicado: (2022) -
Interpreting Potts and Transformer Protein Models Through the Lens of Simplified Attention
por: Bhattacharya, Nicholas, et al.
Publicado: (2022)