Cargando…

Heme binding to the SARS-CoV-2 spike glycoprotein

The target for humoral immunity, SARS-CoV-2 spike glycoprotein, has become the focus of vaccine research and development. Previous work demonstrated that the N-terminal domain (NTD) of SARS-CoV-2 spike binds biliverdin—a product of heme catabolism—causing a strong allosteric effect on the activity o...

Descripción completa

Detalles Bibliográficos
Autores principales: Freeman, Samuel L., Oliveira, A. Sofia F., Gallio, Andrea E., Rosa, Annachiara, Simitakou, Maria K., Arthur, Christopher J., Mulholland, Adrian J., Cherepanov, Peter, Raven, Emma L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416065/
https://www.ncbi.nlm.nih.gov/pubmed/37414149
http://dx.doi.org/10.1016/j.jbc.2023.105014
_version_ 1785087690217095168
author Freeman, Samuel L.
Oliveira, A. Sofia F.
Gallio, Andrea E.
Rosa, Annachiara
Simitakou, Maria K.
Arthur, Christopher J.
Mulholland, Adrian J.
Cherepanov, Peter
Raven, Emma L.
author_facet Freeman, Samuel L.
Oliveira, A. Sofia F.
Gallio, Andrea E.
Rosa, Annachiara
Simitakou, Maria K.
Arthur, Christopher J.
Mulholland, Adrian J.
Cherepanov, Peter
Raven, Emma L.
author_sort Freeman, Samuel L.
collection PubMed
description The target for humoral immunity, SARS-CoV-2 spike glycoprotein, has become the focus of vaccine research and development. Previous work demonstrated that the N-terminal domain (NTD) of SARS-CoV-2 spike binds biliverdin—a product of heme catabolism—causing a strong allosteric effect on the activity of a subset of neutralizing antibodies. Herein, we show that the spike glycoprotein is also able to bind heme (K(D) = 0.5 ± 0.2 μM). Molecular modeling indicated that the heme group fits well within the same pocket on the SARS-CoV-2 spike NTD. Lined by aromatic and hydrophobic residues (W104, V126, I129, F192, F194, I203, and L226), the pocket provides a suitable environment to stabilize the hydrophobic heme. Mutagenesis of N121 has a substantive effect on heme binding (K(D) = 3000 ± 220 μM), confirming the pocket as a major heme binding location of the viral glycoprotein. Coupled oxidation experiments in the presence of ascorbate indicated that the SARS-CoV-2 glycoprotein can catalyze the slow conversion of heme to biliverdin. The heme trapping and oxidation activities of the spike may allow the virus to reduce levels of free heme during infection to facilitate evasion of the adaptive and innate immunity.
format Online
Article
Text
id pubmed-10416065
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-104160652023-08-12 Heme binding to the SARS-CoV-2 spike glycoprotein Freeman, Samuel L. Oliveira, A. Sofia F. Gallio, Andrea E. Rosa, Annachiara Simitakou, Maria K. Arthur, Christopher J. Mulholland, Adrian J. Cherepanov, Peter Raven, Emma L. J Biol Chem Research Article The target for humoral immunity, SARS-CoV-2 spike glycoprotein, has become the focus of vaccine research and development. Previous work demonstrated that the N-terminal domain (NTD) of SARS-CoV-2 spike binds biliverdin—a product of heme catabolism—causing a strong allosteric effect on the activity of a subset of neutralizing antibodies. Herein, we show that the spike glycoprotein is also able to bind heme (K(D) = 0.5 ± 0.2 μM). Molecular modeling indicated that the heme group fits well within the same pocket on the SARS-CoV-2 spike NTD. Lined by aromatic and hydrophobic residues (W104, V126, I129, F192, F194, I203, and L226), the pocket provides a suitable environment to stabilize the hydrophobic heme. Mutagenesis of N121 has a substantive effect on heme binding (K(D) = 3000 ± 220 μM), confirming the pocket as a major heme binding location of the viral glycoprotein. Coupled oxidation experiments in the presence of ascorbate indicated that the SARS-CoV-2 glycoprotein can catalyze the slow conversion of heme to biliverdin. The heme trapping and oxidation activities of the spike may allow the virus to reduce levels of free heme during infection to facilitate evasion of the adaptive and innate immunity. American Society for Biochemistry and Molecular Biology 2023-07-04 /pmc/articles/PMC10416065/ /pubmed/37414149 http://dx.doi.org/10.1016/j.jbc.2023.105014 Text en Crown Copyright © 2023 Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Freeman, Samuel L.
Oliveira, A. Sofia F.
Gallio, Andrea E.
Rosa, Annachiara
Simitakou, Maria K.
Arthur, Christopher J.
Mulholland, Adrian J.
Cherepanov, Peter
Raven, Emma L.
Heme binding to the SARS-CoV-2 spike glycoprotein
title Heme binding to the SARS-CoV-2 spike glycoprotein
title_full Heme binding to the SARS-CoV-2 spike glycoprotein
title_fullStr Heme binding to the SARS-CoV-2 spike glycoprotein
title_full_unstemmed Heme binding to the SARS-CoV-2 spike glycoprotein
title_short Heme binding to the SARS-CoV-2 spike glycoprotein
title_sort heme binding to the sars-cov-2 spike glycoprotein
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416065/
https://www.ncbi.nlm.nih.gov/pubmed/37414149
http://dx.doi.org/10.1016/j.jbc.2023.105014
work_keys_str_mv AT freemansamuell hemebindingtothesarscov2spikeglycoprotein
AT oliveiraasofiaf hemebindingtothesarscov2spikeglycoprotein
AT gallioandreae hemebindingtothesarscov2spikeglycoprotein
AT rosaannachiara hemebindingtothesarscov2spikeglycoprotein
AT simitakoumariak hemebindingtothesarscov2spikeglycoprotein
AT arthurchristopherj hemebindingtothesarscov2spikeglycoprotein
AT mulhollandadrianj hemebindingtothesarscov2spikeglycoprotein
AT cherepanovpeter hemebindingtothesarscov2spikeglycoprotein
AT ravenemmal hemebindingtothesarscov2spikeglycoprotein