Cargando…
Continuous lifelong learning for modeling of gene regulation from single cell multiome data by leveraging atlas-scale external data
Accurate context-specific Gene Regulatory Networks (GRNs) inference from genomics data is a crucial task in computational biology. However, existing methods face limitations, such as reliance on gene expression data alone, lower resolution from bulk data, and data scarcity for specific cellular syst...
Autores principales: | Yuan, Qiuyue, Duren, Zhana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418251/ https://www.ncbi.nlm.nih.gov/pubmed/37577525 http://dx.doi.org/10.1101/2023.08.01.551575 |
Ejemplares similares
-
Integration of single-cell multi-omics data by regression analysis on unpaired observations
por: Yuan, Qiuyue, et al.
Publicado: (2022) -
Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG
por: Duren, Zhana, et al.
Publicado: (2022) -
Author Correction: Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG
por: Duren, Zhana, et al.
Publicado: (2022) -
Single-cell multiomics: technologies and data analysis methods
por: Lee, Jeongwoo, et al.
Publicado: (2020) -
Self-Net: Lifelong Learning via Continual Self-Modeling
por: Mandivarapu, Jaya Krishna, et al.
Publicado: (2020)