Cargando…
IMU/UWB Fusion Method Using a Complementary Filter and a Kalman Filter for Hybrid Upper Limb Motion Estimation
Motion capture systems have enormously benefited the research into human–computer interaction in the aerospace field. Given the high cost and susceptibility to lighting conditions of optical motion capture systems, as well as considering the drift in IMU sensors, this paper utilizes a fusion approac...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422251/ https://www.ncbi.nlm.nih.gov/pubmed/37571484 http://dx.doi.org/10.3390/s23156700 |
_version_ | 1785089159996637184 |
---|---|
author | Shi, Yutong Zhang, Yongbo Li, Zhonghan Yuan, Shangwu Zhu, Shihao |
author_facet | Shi, Yutong Zhang, Yongbo Li, Zhonghan Yuan, Shangwu Zhu, Shihao |
author_sort | Shi, Yutong |
collection | PubMed |
description | Motion capture systems have enormously benefited the research into human–computer interaction in the aerospace field. Given the high cost and susceptibility to lighting conditions of optical motion capture systems, as well as considering the drift in IMU sensors, this paper utilizes a fusion approach with low-cost wearable sensors for hybrid upper limb motion tracking. We propose a novel algorithm that combines the fourth-order Runge–Kutta (RK4) Madgwick complementary orientation filter and the Kalman filter for motion estimation through the data fusion of an inertial measurement unit (IMU) and an ultrawideband (UWB). The Madgwick RK4 orientation filter is used to compensate gyroscope drift through the optimal fusion of a magnetic, angular rate, and gravity (MARG) system, without requiring knowledge of noise distribution for implementation. Then, considering the error distribution provided by the UWB system, we employ a Kalman filter to estimate and fuse the UWB measurements to further reduce the drift error. Adopting the cube distribution of four anchors, the drift-free position obtained by the UWB localization Kalman filter is used to fuse the position calculated by IMU. The proposed algorithm has been tested by various movements and has demonstrated an average decrease in the RMSE of 1.2 cm from the IMU method to IMU/UWB fusion method. The experimental results represent the high feasibility and stability of our proposed algorithm for accurately tracking the movements of human upper limbs. |
format | Online Article Text |
id | pubmed-10422251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104222512023-08-13 IMU/UWB Fusion Method Using a Complementary Filter and a Kalman Filter for Hybrid Upper Limb Motion Estimation Shi, Yutong Zhang, Yongbo Li, Zhonghan Yuan, Shangwu Zhu, Shihao Sensors (Basel) Article Motion capture systems have enormously benefited the research into human–computer interaction in the aerospace field. Given the high cost and susceptibility to lighting conditions of optical motion capture systems, as well as considering the drift in IMU sensors, this paper utilizes a fusion approach with low-cost wearable sensors for hybrid upper limb motion tracking. We propose a novel algorithm that combines the fourth-order Runge–Kutta (RK4) Madgwick complementary orientation filter and the Kalman filter for motion estimation through the data fusion of an inertial measurement unit (IMU) and an ultrawideband (UWB). The Madgwick RK4 orientation filter is used to compensate gyroscope drift through the optimal fusion of a magnetic, angular rate, and gravity (MARG) system, without requiring knowledge of noise distribution for implementation. Then, considering the error distribution provided by the UWB system, we employ a Kalman filter to estimate and fuse the UWB measurements to further reduce the drift error. Adopting the cube distribution of four anchors, the drift-free position obtained by the UWB localization Kalman filter is used to fuse the position calculated by IMU. The proposed algorithm has been tested by various movements and has demonstrated an average decrease in the RMSE of 1.2 cm from the IMU method to IMU/UWB fusion method. The experimental results represent the high feasibility and stability of our proposed algorithm for accurately tracking the movements of human upper limbs. MDPI 2023-07-26 /pmc/articles/PMC10422251/ /pubmed/37571484 http://dx.doi.org/10.3390/s23156700 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shi, Yutong Zhang, Yongbo Li, Zhonghan Yuan, Shangwu Zhu, Shihao IMU/UWB Fusion Method Using a Complementary Filter and a Kalman Filter for Hybrid Upper Limb Motion Estimation |
title | IMU/UWB Fusion Method Using a Complementary Filter and a Kalman Filter for Hybrid Upper Limb Motion Estimation |
title_full | IMU/UWB Fusion Method Using a Complementary Filter and a Kalman Filter for Hybrid Upper Limb Motion Estimation |
title_fullStr | IMU/UWB Fusion Method Using a Complementary Filter and a Kalman Filter for Hybrid Upper Limb Motion Estimation |
title_full_unstemmed | IMU/UWB Fusion Method Using a Complementary Filter and a Kalman Filter for Hybrid Upper Limb Motion Estimation |
title_short | IMU/UWB Fusion Method Using a Complementary Filter and a Kalman Filter for Hybrid Upper Limb Motion Estimation |
title_sort | imu/uwb fusion method using a complementary filter and a kalman filter for hybrid upper limb motion estimation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422251/ https://www.ncbi.nlm.nih.gov/pubmed/37571484 http://dx.doi.org/10.3390/s23156700 |
work_keys_str_mv | AT shiyutong imuuwbfusionmethodusingacomplementaryfilterandakalmanfilterforhybridupperlimbmotionestimation AT zhangyongbo imuuwbfusionmethodusingacomplementaryfilterandakalmanfilterforhybridupperlimbmotionestimation AT lizhonghan imuuwbfusionmethodusingacomplementaryfilterandakalmanfilterforhybridupperlimbmotionestimation AT yuanshangwu imuuwbfusionmethodusingacomplementaryfilterandakalmanfilterforhybridupperlimbmotionestimation AT zhushihao imuuwbfusionmethodusingacomplementaryfilterandakalmanfilterforhybridupperlimbmotionestimation |