Cargando…

Bioinspired preactivation reflex increases robustness of walking on rough terrain

Walking on unknown and rough terrain is challenging for (bipedal) robots, while humans naturally cope with perturbations. Therefore, human strategies serve as an excellent inspiration to improve the robustness of robotic systems. Neuromusculoskeletal (NMS) models provide the necessary interface for...

Descripción completa

Detalles Bibliográficos
Autores principales: Bunz, Elsa K., Haeufle, Daniel F. B., Remy, C. David, Schmitt, Syn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425464/
https://www.ncbi.nlm.nih.gov/pubmed/37580375
http://dx.doi.org/10.1038/s41598-023-39364-3
Descripción
Sumario:Walking on unknown and rough terrain is challenging for (bipedal) robots, while humans naturally cope with perturbations. Therefore, human strategies serve as an excellent inspiration to improve the robustness of robotic systems. Neuromusculoskeletal (NMS) models provide the necessary interface for the validation and transfer of human control strategies. Reflexes play a crucial part during normal locomotion and especially in the face of perturbations, and provide a simple, transferable, and bio-inspired control scheme. Current reflex-based NMS models are not robust to unexpected perturbations. Therefore, in this work, we propose a bio-inspired improvement of a widely used NMS walking model. In humans, different muscles show an increase in activation in anticipation of the landing at the end of the swing phase. This preactivation is not integrated in the used reflex-based walking model. We integrate this activation by adding an additional feedback loop and show that the landing is adapted and the robustness to unexpected step-down perturbations is markedly improved (from 3 to 10 cm). Scrutinizing the effect, we find that the stabilizing effect is caused by changed knee kinematics. Preactivation, therefore, acts as an accommodation strategy to cope with unexpected step-down perturbations, not requiring any detection of the perturbation. Our results indicate that such preactivation can potentially enable a bipedal system to react adequately to upcoming unexpected perturbations and is hence an effective adaptation of reflexes to cope with rough terrain. Preactivation can be ported to robots by leveraging the reflex-control scheme and improves the robustness to step-down perturbation without the need to detect the perturbation. Alternatively, the stabilizing mechanism can also be added in an anticipatory fashion by applying an additional knee torque to the contralateral knee.