Cargando…
Metformin promotes cGAS/STING signaling pathway activation by blocking AKT phosphorylation in gastric cancer
The cGAS/STING signaling pathway plays a pivotal role in regulating innate immunity. Emerging novel drugs aim to regulate the anti-tumor immune response by activating innate immunity. The anti-diabetic drug metformin has been reported to exhibit anti-cancer effect against various types of cancer. Ho...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432977/ https://www.ncbi.nlm.nih.gov/pubmed/37600406 http://dx.doi.org/10.1016/j.heliyon.2023.e18954 |
Sumario: | The cGAS/STING signaling pathway plays a pivotal role in regulating innate immunity. Emerging novel drugs aim to regulate the anti-tumor immune response by activating innate immunity. The anti-diabetic drug metformin has been reported to exhibit anti-cancer effect against various types of cancer. However, the role of metformin in regulating the cGAS/STING signaling pathway in gastric cancer remains unknown. In our study, we first used bioinformatic analysis to detect that metformin is closely related to tumor immunity in multiple tumors. Next, we validated the function of metformin in activating the cGAS/STING signaling pathway in gastric cancer cell lines. In addition, KEGG pathway enrichment analysis showed that metformin is negatively correlated with the PI3K/AKT signaling pathway in gastric cancer. We further verified that metformin activates the cGAS/STING signaling pathway by blocking AKT phosphorylation. Moreover, we found that metformin regulates the AKT signaling pathway by mediating the transcription factor SOX2. Thus, our study indicates that metformin activates the cGAS/STING signaling pathway by suppressing SOX2/AKT and has promising potential in gastric cancer immunotherapy. |
---|