Cargando…

Estragole Inhibits Growth and Aflatoxin Biosynthesis of Aspergillus flavus by Affecting Reactive Oxygen Species Homeostasis

A variety of essential oils and edible compounds have been widely recognized for their antifungal activity in recent years. In this study, we explored the antifungal activity of estragole from Pimenta racemosa against Aspergillus flavus and investigated the underlying mechanism of action. The result...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Liuke, Zhang, Wei, Hao, Jing, Wang, Yanyu, Wei, Shan, Zhang, Shuaibing, Hu, Yuansen, Lv, Yangyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434025/
https://www.ncbi.nlm.nih.gov/pubmed/37289093
http://dx.doi.org/10.1128/spectrum.01348-23
Descripción
Sumario:A variety of essential oils and edible compounds have been widely recognized for their antifungal activity in recent years. In this study, we explored the antifungal activity of estragole from Pimenta racemosa against Aspergillus flavus and investigated the underlying mechanism of action. The results showed that estragole had significant antifungal activity against A. flavus, with a minimum inhibitory concentration of 0.5 μL/mL against spore germination. Additionally, estragole inhibited the biosynthesis of aflatoxin in a dose-dependent manner, and aflatoxin biosynthesis was significantly inhibited at 0.125 μL/mL. Pathogenicity assays showed that estragole had potential antifungal activity against A. flavus in peanut and corn grains by inhibiting conidia and aflatoxin production. Transcriptomic analysis showed that the differentially expressed genes (DEGs) were mainly related to oxidative stress, energy metabolism, and secondary metabolite synthesis following estragole treatment. Importantly, we experimentally verified reactive oxidative species accumulation following downregulation of antioxidant enzymes, including catalase, superoxide dismutase, and peroxidase. These results suggest that estragole inhibits the growth and aflatoxin biosynthesis of A. flavus by modulating intracellular redox homeostasis. These findings expand our knowledge on the antifungal activity and molecular mechanisms of estragole, and provide a basis for estragole as a potential agent against A. flavus contamination. IMPORTANCE Aspergillus flavus contaminates crops and produces aflatoxins, carcinogenic secondary metabolites which pose a serious threat to agricultural production and animal and human health. Currently, control of A. flavus growth and mycotoxin contamination mainly relies on antimicrobial chemicals, agents with side effects such as toxic residues and the emergence of resistance. With their safety, environmental friendliness, and high efficiency, essential oils and edible compounds have become promising antifungal agents to control growth and mycotoxin biosynthesis in hazardous filamentous fungi. In this study, we explored the antifungal activity of estragole from Pimenta racemosa against A. flavus and investigated its underlying mechanism. The results demonstrated that estragole inhibits the growth and aflatoxin biosynthesis of A. flavus by modulating intracellular redox homeostasis.