Cargando…

Reducing Bonding Temperature and Energy Consumption in Electronic Packaging Using Flash Electro-Thermal Carbon Fiber Heating Elements

[Image: see text] Semiconductor packaging based on an epoxy molding compound (EMC) currently has several disadvantages including warpage, limited processing area, and variability that all negatively affect cost and production yield. We propose a facile EMC molding process method using a flash electr...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Seong Yeon, On, Seung Yoon, Kim, Junmo, Lee, Jeonyoon, Kim, Taek-Soo, Wardle, Brian L., Kim, Seong Su
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436241/
https://www.ncbi.nlm.nih.gov/pubmed/37535803
http://dx.doi.org/10.1021/acsami.3c06145
Descripción
Sumario:[Image: see text] Semiconductor packaging based on an epoxy molding compound (EMC) currently has several disadvantages including warpage, limited processing area, and variability that all negatively affect cost and production yield. We propose a facile EMC molding process method using a flash electro-thermal carbon fiber heating (FE-CH) device based on carbon fiber-based papers to manufacture an EMC molded to a copper substrate (EMC/Cu bi-layer package) via Joule heating, and using this device, a modified cure cycle that combines the conventional cure cycle (CCC) with rapid cooling was performed using FE-CH to reduce the curvature of the EMC/Cu bi-layer package. Compared to the conventional hot press process, which uses 3.17 MW of power, the FE-CH process only uses 32.87 kW, resulting in a power consumption reduction of over 100 times when following the CCC. Furthermore, the FE-CH-cured EMC/Cu bi-layer package exhibits mechanical properties equivalent to those of a hot press-cured specimen, including the degree of cure, elastic modulus, curvature, bonding temperature, residual strain, and peel strength. The modified cure cycle using the FE-CH results in a 31% reduction in residual strain, a 32% reduction in curvature, and a 47% increase in peel strength compared to the CCC, indicating that this new process method is very promising for reducing a semiconductor package’s price by reducing the process cost and warpage.