Cargando…

Dynamic alterations in metabolomics and transcriptomics associated with intestinal fibrosis in a 2,4,6-trinitrobenzene sulfonic acid-induced murine model

BACKGROUND & AIMS: Intestinal fibrosis is a common and severe complication of inflammatory bowel disease without clear pathogenesis. Abnormal expression of host genes and metabolic perturbations might associate with the onset of intestinal fibrosis. In this study, we aimed to investigate the rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Jinzhen, Tian, Zhenyi, Zhuang, Xiaoduan, Chen, Yiru, Fan, Tingting, Li, Jiayun, Wang, Xinying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436422/
https://www.ncbi.nlm.nih.gov/pubmed/37592304
http://dx.doi.org/10.1186/s12967-023-04392-0
Descripción
Sumario:BACKGROUND & AIMS: Intestinal fibrosis is a common and severe complication of inflammatory bowel disease without clear pathogenesis. Abnormal expression of host genes and metabolic perturbations might associate with the onset of intestinal fibrosis. In this study, we aimed to investigate the relationship between the development of intestinal fibrosis and the dynamic alterations in both fecal metabolites and host gene expression. METHODS: We induced intestinal fibrosis in a murine model using 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS-treated or control mice were sacrificed after 4 and 6 weeks of intervention; alterations in colonic genes and fecal metabolites were determined by transcriptomics and metabolomics, respectively. Differential, tendency, enrichment, and correlation analyses were performed to assess the relationship between host genes and fecal metabolites. RESULTS: RNA-sequencing analysis revealed that 679 differential genes with enduring changes were mainly enriched in immune response-related signaling pathways and metabolism-related biological processes. Among them, 15 lipid metabolism-related genes were closely related to the development of intestinal fibrosis. Moreover, the fecal metabolic profile was significantly altered during intestinal fibrosis development, especially the lipid metabolites. Particularly, dynamic perturbations in lipids were strongly associated with alterations in lipid metabolism-related genes expression. Additionally, six dynamically altered metabolites might serve as biomarkers to identify colitis-related intestinal fibrosis in the murine model. CONCLUSIONS: Intestinal fibrosis in colitis mice might be related to dynamic changes in gene expression and metabolites. These findings could provide new insights into the pathogenesis of intestinal fibrosis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-023-04392-0.