Cargando…

GTM-decon: guided-topic modeling of single-cell transcriptomes enables sub-cell-type and disease-subtype deconvolution of bulk transcriptomes

Cell-type composition is an important indicator of health. We present Guided Topic Model for deconvolution (GTM-decon) to automatically infer cell-type-specific gene topic distributions from single-cell RNA-seq data for deconvolving bulk transcriptomes. GTM-decon performs competitively on deconvolvi...

Descripción completa

Detalles Bibliográficos
Autores principales: Swapna, Lakshmipuram Seshadri, Huang, Michael, Li, Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436670/
https://www.ncbi.nlm.nih.gov/pubmed/37596691
http://dx.doi.org/10.1186/s13059-023-03034-4
Descripción
Sumario:Cell-type composition is an important indicator of health. We present Guided Topic Model for deconvolution (GTM-decon) to automatically infer cell-type-specific gene topic distributions from single-cell RNA-seq data for deconvolving bulk transcriptomes. GTM-decon performs competitively on deconvolving simulated and real bulk data compared with the state-of-the-art methods. Moreover, as demonstrated in deconvolving disease transcriptomes, GTM-decon can infer multiple cell-type-specific gene topic distributions per cell type, which captures sub-cell-type variations. GTM-decon can also use phenotype labels from single-cell or bulk data to infer phenotype-specific gene distributions. In a nested-guided design, GTM-decon identified cell-type-specific differentially expressed genes from bulk breast cancer transcriptomes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-03034-4.