Cargando…
GTM-decon: guided-topic modeling of single-cell transcriptomes enables sub-cell-type and disease-subtype deconvolution of bulk transcriptomes
Cell-type composition is an important indicator of health. We present Guided Topic Model for deconvolution (GTM-decon) to automatically infer cell-type-specific gene topic distributions from single-cell RNA-seq data for deconvolving bulk transcriptomes. GTM-decon performs competitively on deconvolvi...
Autores principales: | Swapna, Lakshmipuram Seshadri, Huang, Michael, Li, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436670/ https://www.ncbi.nlm.nih.gov/pubmed/37596691 http://dx.doi.org/10.1186/s13059-023-03034-4 |
Ejemplares similares
-
SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
por: Coleman, Kyle, et al.
Publicado: (2023) -
EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning
por: Tu, Jia-Juan, et al.
Publicado: (2022) -
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021) -
SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes
por: Elosua-Bayes, Marc, et al.
Publicado: (2021) -
Likelihood-based deconvolution of bulk gene expression data using single-cell references
por: Erdmann-Pham, Dan D., et al.
Publicado: (2021)