Cargando…
Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients
Human Papilloma Virus (HPV)-associated oropharyngeal squamous cell cancer (OPSCC) represents an OPSCC subgroup with an overall good prognosis with a rising incidence in Western countries. Multiple lines of evidence suggest that HPV-associated tumors are not a homogeneous tumor entity, underlining th...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439941/ https://www.ncbi.nlm.nih.gov/pubmed/37598255 http://dx.doi.org/10.1038/s41746-023-00901-z |
_version_ | 1785093063667875840 |
---|---|
author | Klein, Sebastian Wuerdemann, Nora Demers, Imke Kopp, Christopher Quantius, Jennifer Charpentier, Arthur Tolkach, Yuri Brinker, Klaus Sharma, Shachi Jenny George, Julie Hess, Jochen Stögbauer, Fabian Lacko, Martin Struijlaart, Marijn van den Hout, Mari F.C.M. Wagner, Steffen Wittekindt, Claus Langer, Christine Arens, Christoph Buettner, Reinhard Quaas, Alexander Reinhardt, Hans Christian Speel, Ernst-Jan Klussmann, Jens Peter |
author_facet | Klein, Sebastian Wuerdemann, Nora Demers, Imke Kopp, Christopher Quantius, Jennifer Charpentier, Arthur Tolkach, Yuri Brinker, Klaus Sharma, Shachi Jenny George, Julie Hess, Jochen Stögbauer, Fabian Lacko, Martin Struijlaart, Marijn van den Hout, Mari F.C.M. Wagner, Steffen Wittekindt, Claus Langer, Christine Arens, Christoph Buettner, Reinhard Quaas, Alexander Reinhardt, Hans Christian Speel, Ernst-Jan Klussmann, Jens Peter |
author_sort | Klein, Sebastian |
collection | PubMed |
description | Human Papilloma Virus (HPV)-associated oropharyngeal squamous cell cancer (OPSCC) represents an OPSCC subgroup with an overall good prognosis with a rising incidence in Western countries. Multiple lines of evidence suggest that HPV-associated tumors are not a homogeneous tumor entity, underlining the need for accurate prognostic biomarkers. In this retrospective, multi-institutional study involving 906 patients from four centers and one database, we developed a deep learning algorithm (OPSCCnet), to analyze standard H&E stains for the calculation of a patient-level score associated with prognosis, comparing it to combined HPV-DNA and p16-status. When comparing OPSCCnet to HPV-status, the algorithm showed a good overall performance with a mean area under the receiver operator curve (AUROC) = 0.83 (95% CI = 0.77-0.9) for the test cohort (n = 639), which could be increased to AUROC = 0.88 by filtering cases using a fixed threshold on the variance of the probability of the HPV-positive class - a potential surrogate marker of HPV-heterogeneity. OPSCCnet could be used as a screening tool, outperforming gold standard HPV testing (OPSCCnet: five-year survival rate: 96% [95% CI = 90–100%]; HPV testing: five-year survival rate: 80% [95% CI = 71–90%]). This could be confirmed using a multivariate analysis of a three-tier threshold (OPSCCnet: high HR = 0.15 [95% CI = 0.05–0.44], intermediate HR = 0.58 [95% CI = 0.34–0.98] p = 0.043, Cox proportional hazards model, n = 211; HPV testing: HR = 0.29 [95% CI = 0.15–0.54] p < 0.001, Cox proportional hazards model, n = 211). Collectively, our findings indicate that by analyzing standard gigapixel hematoxylin and eosin (H&E) histological whole-slide images, OPSCCnet demonstrated superior performance over p16/HPV-DNA testing in various clinical scenarios, particularly in accurately stratifying these patients. |
format | Online Article Text |
id | pubmed-10439941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-104399412023-08-21 Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients Klein, Sebastian Wuerdemann, Nora Demers, Imke Kopp, Christopher Quantius, Jennifer Charpentier, Arthur Tolkach, Yuri Brinker, Klaus Sharma, Shachi Jenny George, Julie Hess, Jochen Stögbauer, Fabian Lacko, Martin Struijlaart, Marijn van den Hout, Mari F.C.M. Wagner, Steffen Wittekindt, Claus Langer, Christine Arens, Christoph Buettner, Reinhard Quaas, Alexander Reinhardt, Hans Christian Speel, Ernst-Jan Klussmann, Jens Peter NPJ Digit Med Article Human Papilloma Virus (HPV)-associated oropharyngeal squamous cell cancer (OPSCC) represents an OPSCC subgroup with an overall good prognosis with a rising incidence in Western countries. Multiple lines of evidence suggest that HPV-associated tumors are not a homogeneous tumor entity, underlining the need for accurate prognostic biomarkers. In this retrospective, multi-institutional study involving 906 patients from four centers and one database, we developed a deep learning algorithm (OPSCCnet), to analyze standard H&E stains for the calculation of a patient-level score associated with prognosis, comparing it to combined HPV-DNA and p16-status. When comparing OPSCCnet to HPV-status, the algorithm showed a good overall performance with a mean area under the receiver operator curve (AUROC) = 0.83 (95% CI = 0.77-0.9) for the test cohort (n = 639), which could be increased to AUROC = 0.88 by filtering cases using a fixed threshold on the variance of the probability of the HPV-positive class - a potential surrogate marker of HPV-heterogeneity. OPSCCnet could be used as a screening tool, outperforming gold standard HPV testing (OPSCCnet: five-year survival rate: 96% [95% CI = 90–100%]; HPV testing: five-year survival rate: 80% [95% CI = 71–90%]). This could be confirmed using a multivariate analysis of a three-tier threshold (OPSCCnet: high HR = 0.15 [95% CI = 0.05–0.44], intermediate HR = 0.58 [95% CI = 0.34–0.98] p = 0.043, Cox proportional hazards model, n = 211; HPV testing: HR = 0.29 [95% CI = 0.15–0.54] p < 0.001, Cox proportional hazards model, n = 211). Collectively, our findings indicate that by analyzing standard gigapixel hematoxylin and eosin (H&E) histological whole-slide images, OPSCCnet demonstrated superior performance over p16/HPV-DNA testing in various clinical scenarios, particularly in accurately stratifying these patients. Nature Publishing Group UK 2023-08-19 /pmc/articles/PMC10439941/ /pubmed/37598255 http://dx.doi.org/10.1038/s41746-023-00901-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Klein, Sebastian Wuerdemann, Nora Demers, Imke Kopp, Christopher Quantius, Jennifer Charpentier, Arthur Tolkach, Yuri Brinker, Klaus Sharma, Shachi Jenny George, Julie Hess, Jochen Stögbauer, Fabian Lacko, Martin Struijlaart, Marijn van den Hout, Mari F.C.M. Wagner, Steffen Wittekindt, Claus Langer, Christine Arens, Christoph Buettner, Reinhard Quaas, Alexander Reinhardt, Hans Christian Speel, Ernst-Jan Klussmann, Jens Peter Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients |
title | Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients |
title_full | Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients |
title_fullStr | Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients |
title_full_unstemmed | Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients |
title_short | Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients |
title_sort | predicting hpv association using deep learning and regular h&e stains allows granular stratification of oropharyngeal cancer patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439941/ https://www.ncbi.nlm.nih.gov/pubmed/37598255 http://dx.doi.org/10.1038/s41746-023-00901-z |
work_keys_str_mv | AT kleinsebastian predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT wuerdemannnora predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT demersimke predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT koppchristopher predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT quantiusjennifer predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT charpentierarthur predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT tolkachyuri predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT brinkerklaus predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT sharmashachijenny predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT georgejulie predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT hessjochen predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT stogbauerfabian predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT lackomartin predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT struijlaartmarijn predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT vandenhoutmarifcm predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT wagnersteffen predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT wittekindtclaus predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT langerchristine predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT arenschristoph predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT buettnerreinhard predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT quaasalexander predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT reinhardthanschristian predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT speelernstjan predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients AT klussmannjenspeter predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients |