Cargando…

Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients

Human Papilloma Virus (HPV)-associated oropharyngeal squamous cell cancer (OPSCC) represents an OPSCC subgroup with an overall good prognosis with a rising incidence in Western countries. Multiple lines of evidence suggest that HPV-associated tumors are not a homogeneous tumor entity, underlining th...

Descripción completa

Detalles Bibliográficos
Autores principales: Klein, Sebastian, Wuerdemann, Nora, Demers, Imke, Kopp, Christopher, Quantius, Jennifer, Charpentier, Arthur, Tolkach, Yuri, Brinker, Klaus, Sharma, Shachi Jenny, George, Julie, Hess, Jochen, Stögbauer, Fabian, Lacko, Martin, Struijlaart, Marijn, van den Hout, Mari F.C.M., Wagner, Steffen, Wittekindt, Claus, Langer, Christine, Arens, Christoph, Buettner, Reinhard, Quaas, Alexander, Reinhardt, Hans Christian, Speel, Ernst-Jan, Klussmann, Jens Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439941/
https://www.ncbi.nlm.nih.gov/pubmed/37598255
http://dx.doi.org/10.1038/s41746-023-00901-z
_version_ 1785093063667875840
author Klein, Sebastian
Wuerdemann, Nora
Demers, Imke
Kopp, Christopher
Quantius, Jennifer
Charpentier, Arthur
Tolkach, Yuri
Brinker, Klaus
Sharma, Shachi Jenny
George, Julie
Hess, Jochen
Stögbauer, Fabian
Lacko, Martin
Struijlaart, Marijn
van den Hout, Mari F.C.M.
Wagner, Steffen
Wittekindt, Claus
Langer, Christine
Arens, Christoph
Buettner, Reinhard
Quaas, Alexander
Reinhardt, Hans Christian
Speel, Ernst-Jan
Klussmann, Jens Peter
author_facet Klein, Sebastian
Wuerdemann, Nora
Demers, Imke
Kopp, Christopher
Quantius, Jennifer
Charpentier, Arthur
Tolkach, Yuri
Brinker, Klaus
Sharma, Shachi Jenny
George, Julie
Hess, Jochen
Stögbauer, Fabian
Lacko, Martin
Struijlaart, Marijn
van den Hout, Mari F.C.M.
Wagner, Steffen
Wittekindt, Claus
Langer, Christine
Arens, Christoph
Buettner, Reinhard
Quaas, Alexander
Reinhardt, Hans Christian
Speel, Ernst-Jan
Klussmann, Jens Peter
author_sort Klein, Sebastian
collection PubMed
description Human Papilloma Virus (HPV)-associated oropharyngeal squamous cell cancer (OPSCC) represents an OPSCC subgroup with an overall good prognosis with a rising incidence in Western countries. Multiple lines of evidence suggest that HPV-associated tumors are not a homogeneous tumor entity, underlining the need for accurate prognostic biomarkers. In this retrospective, multi-institutional study involving 906 patients from four centers and one database, we developed a deep learning algorithm (OPSCCnet), to analyze standard H&E stains for the calculation of a patient-level score associated with prognosis, comparing it to combined HPV-DNA and p16-status. When comparing OPSCCnet to HPV-status, the algorithm showed a good overall performance with a mean area under the receiver operator curve (AUROC) = 0.83 (95% CI = 0.77-0.9) for the test cohort (n = 639), which could be increased to AUROC = 0.88 by filtering cases using a fixed threshold on the variance of the probability of the HPV-positive class - a potential surrogate marker of HPV-heterogeneity. OPSCCnet could be used as a screening tool, outperforming gold standard HPV testing (OPSCCnet: five-year survival rate: 96% [95% CI = 90–100%]; HPV testing: five-year survival rate: 80% [95% CI = 71–90%]). This could be confirmed using a multivariate analysis of a three-tier threshold (OPSCCnet: high HR = 0.15 [95% CI = 0.05–0.44], intermediate HR = 0.58 [95% CI = 0.34–0.98] p = 0.043, Cox proportional hazards model, n = 211; HPV testing: HR = 0.29 [95% CI = 0.15–0.54] p < 0.001, Cox proportional hazards model, n = 211). Collectively, our findings indicate that by analyzing standard gigapixel hematoxylin and eosin (H&E) histological whole-slide images, OPSCCnet demonstrated superior performance over p16/HPV-DNA testing in various clinical scenarios, particularly in accurately stratifying these patients.
format Online
Article
Text
id pubmed-10439941
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104399412023-08-21 Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients Klein, Sebastian Wuerdemann, Nora Demers, Imke Kopp, Christopher Quantius, Jennifer Charpentier, Arthur Tolkach, Yuri Brinker, Klaus Sharma, Shachi Jenny George, Julie Hess, Jochen Stögbauer, Fabian Lacko, Martin Struijlaart, Marijn van den Hout, Mari F.C.M. Wagner, Steffen Wittekindt, Claus Langer, Christine Arens, Christoph Buettner, Reinhard Quaas, Alexander Reinhardt, Hans Christian Speel, Ernst-Jan Klussmann, Jens Peter NPJ Digit Med Article Human Papilloma Virus (HPV)-associated oropharyngeal squamous cell cancer (OPSCC) represents an OPSCC subgroup with an overall good prognosis with a rising incidence in Western countries. Multiple lines of evidence suggest that HPV-associated tumors are not a homogeneous tumor entity, underlining the need for accurate prognostic biomarkers. In this retrospective, multi-institutional study involving 906 patients from four centers and one database, we developed a deep learning algorithm (OPSCCnet), to analyze standard H&E stains for the calculation of a patient-level score associated with prognosis, comparing it to combined HPV-DNA and p16-status. When comparing OPSCCnet to HPV-status, the algorithm showed a good overall performance with a mean area under the receiver operator curve (AUROC) = 0.83 (95% CI = 0.77-0.9) for the test cohort (n = 639), which could be increased to AUROC = 0.88 by filtering cases using a fixed threshold on the variance of the probability of the HPV-positive class - a potential surrogate marker of HPV-heterogeneity. OPSCCnet could be used as a screening tool, outperforming gold standard HPV testing (OPSCCnet: five-year survival rate: 96% [95% CI = 90–100%]; HPV testing: five-year survival rate: 80% [95% CI = 71–90%]). This could be confirmed using a multivariate analysis of a three-tier threshold (OPSCCnet: high HR = 0.15 [95% CI = 0.05–0.44], intermediate HR = 0.58 [95% CI = 0.34–0.98] p = 0.043, Cox proportional hazards model, n = 211; HPV testing: HR = 0.29 [95% CI = 0.15–0.54] p < 0.001, Cox proportional hazards model, n = 211). Collectively, our findings indicate that by analyzing standard gigapixel hematoxylin and eosin (H&E) histological whole-slide images, OPSCCnet demonstrated superior performance over p16/HPV-DNA testing in various clinical scenarios, particularly in accurately stratifying these patients. Nature Publishing Group UK 2023-08-19 /pmc/articles/PMC10439941/ /pubmed/37598255 http://dx.doi.org/10.1038/s41746-023-00901-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Klein, Sebastian
Wuerdemann, Nora
Demers, Imke
Kopp, Christopher
Quantius, Jennifer
Charpentier, Arthur
Tolkach, Yuri
Brinker, Klaus
Sharma, Shachi Jenny
George, Julie
Hess, Jochen
Stögbauer, Fabian
Lacko, Martin
Struijlaart, Marijn
van den Hout, Mari F.C.M.
Wagner, Steffen
Wittekindt, Claus
Langer, Christine
Arens, Christoph
Buettner, Reinhard
Quaas, Alexander
Reinhardt, Hans Christian
Speel, Ernst-Jan
Klussmann, Jens Peter
Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients
title Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients
title_full Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients
title_fullStr Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients
title_full_unstemmed Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients
title_short Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients
title_sort predicting hpv association using deep learning and regular h&e stains allows granular stratification of oropharyngeal cancer patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439941/
https://www.ncbi.nlm.nih.gov/pubmed/37598255
http://dx.doi.org/10.1038/s41746-023-00901-z
work_keys_str_mv AT kleinsebastian predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT wuerdemannnora predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT demersimke predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT koppchristopher predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT quantiusjennifer predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT charpentierarthur predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT tolkachyuri predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT brinkerklaus predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT sharmashachijenny predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT georgejulie predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT hessjochen predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT stogbauerfabian predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT lackomartin predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT struijlaartmarijn predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT vandenhoutmarifcm predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT wagnersteffen predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT wittekindtclaus predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT langerchristine predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT arenschristoph predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT buettnerreinhard predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT quaasalexander predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT reinhardthanschristian predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT speelernstjan predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients
AT klussmannjenspeter predictinghpvassociationusingdeeplearningandregularhestainsallowsgranularstratificationoforopharyngealcancerpatients