Cargando…
Some aspects of the life of SARS-CoV-2 ORF3a protein in mammalian cells
The accessory protein ORF3a, from SARS-CoV-2, plays a critical role in viral infection and pathogenesis. Here, we characterized ORF3a assembly, ion channel activity, subcellular localization, and interactome. At the plasma membrane, ORF3a exists mostly as monomers and dimers, which do not alter the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440475/ https://www.ncbi.nlm.nih.gov/pubmed/37609425 http://dx.doi.org/10.1016/j.heliyon.2023.e18754 |
Sumario: | The accessory protein ORF3a, from SARS-CoV-2, plays a critical role in viral infection and pathogenesis. Here, we characterized ORF3a assembly, ion channel activity, subcellular localization, and interactome. At the plasma membrane, ORF3a exists mostly as monomers and dimers, which do not alter the native cell membrane conductance, suggesting that ORF3a does not function as a viroporin at the cell surface. As a membrane protein, ORF3a is synthesized at the ER and sorted via a canonical route. ORF3a overexpression induced an approximately 25% increase in cell death. By developing an APEX2-based proximity labeling assay, we uncovered proteins proximal to ORF3a, suggesting that ORF3a recruits some host proteins to weaken the cell. In addition, it exposed a set of mitochondria related proteins that triggered mitochondrial fission. Overall, this work can be an important instrument in understanding the role of ORF3a in the virus pathogenicity and searching for potential therapeutic treatments for COVID-19. |
---|