Cargando…
A parallel heterogeneous policy deep reinforcement learning algorithm for bipedal walking motion design
Considering the dynamics and non-linear characteristics of biped robots, gait optimization is an extremely challenging task. To tackle this issue, a parallel heterogeneous policy Deep Reinforcement Learning (DRL) algorithm for gait optimization is proposed. Firstly, the Deep Deterministic Policy Gra...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442573/ https://www.ncbi.nlm.nih.gov/pubmed/37614967 http://dx.doi.org/10.3389/fnbot.2023.1205775 |