Cargando…

Enhancing cryo-EM maps with 3D deep generative networks for assisting protein structure modeling

MOTIVATION: The tertiary structures of an increasing number of biological macromolecules have been determined using cryo-electron microscopy (cryo-EM). However, there are still many cases where the resolution is not high enough to model the molecular structures with standard computational tools. If...

Descripción completa

Detalles Bibliográficos
Autores principales: Maddhuri Venkata Subramaniya, Sai Raghavendra, Terashi, Genki, Kihara, Daisuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444963/
https://www.ncbi.nlm.nih.gov/pubmed/37549063
http://dx.doi.org/10.1093/bioinformatics/btad494
Descripción
Sumario:MOTIVATION: The tertiary structures of an increasing number of biological macromolecules have been determined using cryo-electron microscopy (cryo-EM). However, there are still many cases where the resolution is not high enough to model the molecular structures with standard computational tools. If the resolution obtained is near the empirical borderline (3–4.5 Å), improvement in the map quality facilitates structure modeling. RESULTS: We report EM-GAN, a novel approach that modifies an input cryo-EM map to assist protein structure modeling. The method uses a 3D generative adversarial network (GAN) that has been trained on high- and low-resolution density maps to learn the density patterns, and modifies the input map to enhance its suitability for modeling. The method was tested extensively on a dataset of 65 EM maps in the resolution range of 3–6 Å and showed substantial improvements in structure modeling using popular protein structure modeling tools. AVAILABILITY AND IMPLEMENTATION: https://github.com/kiharalab/EM-GAN, Google Colab: https://tinyurl.com/3ccxpttx.