Cargando…
Enhancing cryo-EM maps with 3D deep generative networks for assisting protein structure modeling
MOTIVATION: The tertiary structures of an increasing number of biological macromolecules have been determined using cryo-electron microscopy (cryo-EM). However, there are still many cases where the resolution is not high enough to model the molecular structures with standard computational tools. If...
Autores principales: | Maddhuri Venkata Subramaniya, Sai Raghavendra, Terashi, Genki, Kihara, Daisuke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444963/ https://www.ncbi.nlm.nih.gov/pubmed/37549063 http://dx.doi.org/10.1093/bioinformatics/btad494 |
Ejemplares similares
-
Protein Secondary Structure Detection in Intermediate Resolution Cryo-EM Maps Using Deep Learning
por: Subramaniya, Sai Raghavendra Maddhuri Venkata, et al.
Publicado: (2019) -
Detecting protein and DNA/RNA structures in cryo-EM maps of intermediate resolution using deep learning
por: Wang, Xiao, et al.
Publicado: (2021) -
Analyzing effect of quadruple multiple sequence alignments on deep learning based protein inter-residue distance prediction
por: Jain, Aashish, et al.
Publicado: (2021) -
Protein model refinement for cryo-EM maps using AlphaFold2 and the DAQ score
por: Terashi, Genki, et al.
Publicado: (2023) -
VESPER: global and local cryo-EM map alignment using local density vectors
por: Han, Xusi, et al.
Publicado: (2021)