Cargando…

Preferential killing of melanoma cells by a p16-related peptide

We report the identification of a synthetic, cell-penetrating peptide able to kill human melanoma cells efficiently and selectively, while being less toxic to normal human melanocytes and nontoxic to human fibroblasts. The peptide is based on the target-binding site of the melanoma suppressor and se...

Descripción completa

Detalles Bibliográficos
Autores principales: Soo, Julia K., Castle, Joanna T., Bennett, Dorothy C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445694/
https://www.ncbi.nlm.nih.gov/pubmed/37522264
http://dx.doi.org/10.1242/bio.059965
Descripción
Sumario:We report the identification of a synthetic, cell-penetrating peptide able to kill human melanoma cells efficiently and selectively, while being less toxic to normal human melanocytes and nontoxic to human fibroblasts. The peptide is based on the target-binding site of the melanoma suppressor and senescence effector p16 (also known as INK4A or CDKN2A), coupled to a cell-penetrating moiety. The killing is by apoptosis and appears to act by a route other than the canonical downstream target of p16 and CDK4, the retinoblastoma (RB) protein family, as it is also effective in HeLa cells and a melanocyte line expressing HPV E7 oncogenes, which both lack any active RB. There was varying toxicity to other types of cancer cell lines, such as glioblastoma. Melanoma cell killing by a p16-derived peptide was reported once before but only at a higher concentration, while selectivity and generality were not previously tested.