Cargando…
Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’
How do language learners avoid the production of verb argument structure overgeneralization errors ( *The clown laughed the man c.f. The clown made the man laugh), while retaining the ability to apply such generalizations productively when appropriate? This question has long been seen as one that is...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446094/ https://www.ncbi.nlm.nih.gov/pubmed/37645154 http://dx.doi.org/10.12688/openreseurope.13008.2 |
_version_ | 1785094327765041152 |
---|---|
author | Ambridge, Ben Doherty, Laura Maitreyee, Ramya Tatsumi, Tomoko Zicherman, Shira Mateo Pedro, Pedro Kawakami, Ayuno Bidgood, Amy Pye, Clifton Narasimhan, Bhuvana Arnon, Inbal Bekman, Dani Efrati, Amir Fabiola Can Pixabaj, Sindy Marroquín Pelíz, Mario Julajuj Mendoza, Margarita Samanta, Soumitra Campbell, Seth McCauley, Stewart Berman, Ruth Misra Sharma, Dipti Bhaya Nair, Rukmini Fukumura, Kumiko |
author_facet | Ambridge, Ben Doherty, Laura Maitreyee, Ramya Tatsumi, Tomoko Zicherman, Shira Mateo Pedro, Pedro Kawakami, Ayuno Bidgood, Amy Pye, Clifton Narasimhan, Bhuvana Arnon, Inbal Bekman, Dani Efrati, Amir Fabiola Can Pixabaj, Sindy Marroquín Pelíz, Mario Julajuj Mendoza, Margarita Samanta, Soumitra Campbell, Seth McCauley, Stewart Berman, Ruth Misra Sharma, Dipti Bhaya Nair, Rukmini Fukumura, Kumiko |
author_sort | Ambridge, Ben |
collection | PubMed |
description | How do language learners avoid the production of verb argument structure overgeneralization errors ( *The clown laughed the man c.f. The clown made the man laugh), while retaining the ability to apply such generalizations productively when appropriate? This question has long been seen as one that is both particularly central to acquisition research and particularly challenging. Focussing on causative overgeneralization errors of this type, a previous study reported a computational model that learns, on the basis of corpus data and human-derived verb-semantic-feature ratings, to predict adults’ by-verb preferences for less- versus more-transparent causative forms (e.g., * The clown laughed the man vs The clown made the man laugh) across English, Hebrew, Hindi, Japanese and K’iche Mayan. Here, we tested the ability of this model (and an expanded version with multiple hidden layers) to explain binary grammaticality judgment data from children aged 4;0-5;0, and elicited-production data from children aged 4;0-5;0 and 5;6-6;6 ( N=48 per language). In general, the model successfully simulated both children’s judgment and production data, with correlations of r=0.5-0.6 and r=0.75-0.85, respectively, and also generalized to unseen verbs. Importantly, learners of all five languages showed some evidence of making the types of overgeneralization errors – in both judgments and production – previously observed in naturalistic studies of English (e.g., *I’m dancing it). Together with previous findings, the present study demonstrates that a simple learning model can explain (a) adults’ continuous judgment data, (b) children’s binary judgment data and (c) children’s production data (with no training of these datasets), and therefore constitutes a plausible mechanistic account of the acquisition of verbs’ argument structure restrictions. |
format | Online Article Text |
id | pubmed-10446094 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-104460942023-08-29 Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’ Ambridge, Ben Doherty, Laura Maitreyee, Ramya Tatsumi, Tomoko Zicherman, Shira Mateo Pedro, Pedro Kawakami, Ayuno Bidgood, Amy Pye, Clifton Narasimhan, Bhuvana Arnon, Inbal Bekman, Dani Efrati, Amir Fabiola Can Pixabaj, Sindy Marroquín Pelíz, Mario Julajuj Mendoza, Margarita Samanta, Soumitra Campbell, Seth McCauley, Stewart Berman, Ruth Misra Sharma, Dipti Bhaya Nair, Rukmini Fukumura, Kumiko Open Res Eur Research Article How do language learners avoid the production of verb argument structure overgeneralization errors ( *The clown laughed the man c.f. The clown made the man laugh), while retaining the ability to apply such generalizations productively when appropriate? This question has long been seen as one that is both particularly central to acquisition research and particularly challenging. Focussing on causative overgeneralization errors of this type, a previous study reported a computational model that learns, on the basis of corpus data and human-derived verb-semantic-feature ratings, to predict adults’ by-verb preferences for less- versus more-transparent causative forms (e.g., * The clown laughed the man vs The clown made the man laugh) across English, Hebrew, Hindi, Japanese and K’iche Mayan. Here, we tested the ability of this model (and an expanded version with multiple hidden layers) to explain binary grammaticality judgment data from children aged 4;0-5;0, and elicited-production data from children aged 4;0-5;0 and 5;6-6;6 ( N=48 per language). In general, the model successfully simulated both children’s judgment and production data, with correlations of r=0.5-0.6 and r=0.75-0.85, respectively, and also generalized to unseen verbs. Importantly, learners of all five languages showed some evidence of making the types of overgeneralization errors – in both judgments and production – previously observed in naturalistic studies of English (e.g., *I’m dancing it). Together with previous findings, the present study demonstrates that a simple learning model can explain (a) adults’ continuous judgment data, (b) children’s binary judgment data and (c) children’s production data (with no training of these datasets), and therefore constitutes a plausible mechanistic account of the acquisition of verbs’ argument structure restrictions. F1000 Research Limited 2022-01-12 /pmc/articles/PMC10446094/ /pubmed/37645154 http://dx.doi.org/10.12688/openreseurope.13008.2 Text en Copyright: © 2022 Ambridge B et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ambridge, Ben Doherty, Laura Maitreyee, Ramya Tatsumi, Tomoko Zicherman, Shira Mateo Pedro, Pedro Kawakami, Ayuno Bidgood, Amy Pye, Clifton Narasimhan, Bhuvana Arnon, Inbal Bekman, Dani Efrati, Amir Fabiola Can Pixabaj, Sindy Marroquín Pelíz, Mario Julajuj Mendoza, Margarita Samanta, Soumitra Campbell, Seth McCauley, Stewart Berman, Ruth Misra Sharma, Dipti Bhaya Nair, Rukmini Fukumura, Kumiko Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’ |
title | Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’ |
title_full | Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’ |
title_fullStr | Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’ |
title_full_unstemmed | Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’ |
title_short | Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’ |
title_sort | testing a computational model of causative overgeneralizations: child judgment and production data from english, hebrew, hindi, japanese and k’iche’ |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446094/ https://www.ncbi.nlm.nih.gov/pubmed/37645154 http://dx.doi.org/10.12688/openreseurope.13008.2 |
work_keys_str_mv | AT ambridgeben testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT dohertylaura testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT maitreyeeramya testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT tatsumitomoko testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT zichermanshira testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT mateopedropedro testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT kawakamiayuno testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT bidgoodamy testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT pyeclifton testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT narasimhanbhuvana testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT arnoninbal testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT bekmandani testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT efratiamir testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT fabiolacanpixabajsindy testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT marroquinpelizmario testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT julajujmendozamargarita testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT samantasoumitra testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT campbellseth testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT mccauleystewart testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT bermanruth testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT misrasharmadipti testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT bhayanairrukmini testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche AT fukumurakumiko testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche |