Cargando…

Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’

How do language learners avoid the production of verb argument structure overgeneralization errors ( *The clown laughed the man c.f. The clown made the man laugh), while retaining the ability to apply such generalizations productively when appropriate? This question has long been seen as one that is...

Descripción completa

Detalles Bibliográficos
Autores principales: Ambridge, Ben, Doherty, Laura, Maitreyee, Ramya, Tatsumi, Tomoko, Zicherman, Shira, Mateo Pedro, Pedro, Kawakami, Ayuno, Bidgood, Amy, Pye, Clifton, Narasimhan, Bhuvana, Arnon, Inbal, Bekman, Dani, Efrati, Amir, Fabiola Can Pixabaj, Sindy, Marroquín Pelíz, Mario, Julajuj Mendoza, Margarita, Samanta, Soumitra, Campbell, Seth, McCauley, Stewart, Berman, Ruth, Misra Sharma, Dipti, Bhaya Nair, Rukmini, Fukumura, Kumiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446094/
https://www.ncbi.nlm.nih.gov/pubmed/37645154
http://dx.doi.org/10.12688/openreseurope.13008.2
_version_ 1785094327765041152
author Ambridge, Ben
Doherty, Laura
Maitreyee, Ramya
Tatsumi, Tomoko
Zicherman, Shira
Mateo Pedro, Pedro
Kawakami, Ayuno
Bidgood, Amy
Pye, Clifton
Narasimhan, Bhuvana
Arnon, Inbal
Bekman, Dani
Efrati, Amir
Fabiola Can Pixabaj, Sindy
Marroquín Pelíz, Mario
Julajuj Mendoza, Margarita
Samanta, Soumitra
Campbell, Seth
McCauley, Stewart
Berman, Ruth
Misra Sharma, Dipti
Bhaya Nair, Rukmini
Fukumura, Kumiko
author_facet Ambridge, Ben
Doherty, Laura
Maitreyee, Ramya
Tatsumi, Tomoko
Zicherman, Shira
Mateo Pedro, Pedro
Kawakami, Ayuno
Bidgood, Amy
Pye, Clifton
Narasimhan, Bhuvana
Arnon, Inbal
Bekman, Dani
Efrati, Amir
Fabiola Can Pixabaj, Sindy
Marroquín Pelíz, Mario
Julajuj Mendoza, Margarita
Samanta, Soumitra
Campbell, Seth
McCauley, Stewart
Berman, Ruth
Misra Sharma, Dipti
Bhaya Nair, Rukmini
Fukumura, Kumiko
author_sort Ambridge, Ben
collection PubMed
description How do language learners avoid the production of verb argument structure overgeneralization errors ( *The clown laughed the man c.f. The clown made the man laugh), while retaining the ability to apply such generalizations productively when appropriate? This question has long been seen as one that is both particularly central to acquisition research and particularly challenging. Focussing on causative overgeneralization errors of this type, a previous study reported a computational model that learns, on the basis of corpus data and human-derived verb-semantic-feature ratings, to predict adults’ by-verb preferences for less- versus more-transparent causative forms (e.g., * The clown laughed the man vs The clown made the man laugh) across English, Hebrew, Hindi, Japanese and K’iche Mayan. Here, we tested the ability of this model (and an expanded version with multiple hidden layers) to explain binary grammaticality judgment data from children aged 4;0-5;0, and elicited-production data from children aged 4;0-5;0 and 5;6-6;6 ( N=48 per language). In general, the model successfully simulated both children’s judgment and production data, with correlations of r=0.5-0.6 and r=0.75-0.85, respectively, and also generalized to unseen verbs. Importantly, learners of all five languages showed some evidence of making the types of overgeneralization errors – in both judgments and production – previously observed in naturalistic studies of English (e.g., *I’m dancing it). Together with previous findings, the present study demonstrates that a simple learning model can explain (a) adults’ continuous judgment data, (b) children’s binary judgment data and (c) children’s production data (with no training of these datasets), and therefore constitutes a plausible mechanistic account of the acquisition of verbs’ argument structure restrictions.
format Online
Article
Text
id pubmed-10446094
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher F1000 Research Limited
record_format MEDLINE/PubMed
spelling pubmed-104460942023-08-29 Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’ Ambridge, Ben Doherty, Laura Maitreyee, Ramya Tatsumi, Tomoko Zicherman, Shira Mateo Pedro, Pedro Kawakami, Ayuno Bidgood, Amy Pye, Clifton Narasimhan, Bhuvana Arnon, Inbal Bekman, Dani Efrati, Amir Fabiola Can Pixabaj, Sindy Marroquín Pelíz, Mario Julajuj Mendoza, Margarita Samanta, Soumitra Campbell, Seth McCauley, Stewart Berman, Ruth Misra Sharma, Dipti Bhaya Nair, Rukmini Fukumura, Kumiko Open Res Eur Research Article How do language learners avoid the production of verb argument structure overgeneralization errors ( *The clown laughed the man c.f. The clown made the man laugh), while retaining the ability to apply such generalizations productively when appropriate? This question has long been seen as one that is both particularly central to acquisition research and particularly challenging. Focussing on causative overgeneralization errors of this type, a previous study reported a computational model that learns, on the basis of corpus data and human-derived verb-semantic-feature ratings, to predict adults’ by-verb preferences for less- versus more-transparent causative forms (e.g., * The clown laughed the man vs The clown made the man laugh) across English, Hebrew, Hindi, Japanese and K’iche Mayan. Here, we tested the ability of this model (and an expanded version with multiple hidden layers) to explain binary grammaticality judgment data from children aged 4;0-5;0, and elicited-production data from children aged 4;0-5;0 and 5;6-6;6 ( N=48 per language). In general, the model successfully simulated both children’s judgment and production data, with correlations of r=0.5-0.6 and r=0.75-0.85, respectively, and also generalized to unseen verbs. Importantly, learners of all five languages showed some evidence of making the types of overgeneralization errors – in both judgments and production – previously observed in naturalistic studies of English (e.g., *I’m dancing it). Together with previous findings, the present study demonstrates that a simple learning model can explain (a) adults’ continuous judgment data, (b) children’s binary judgment data and (c) children’s production data (with no training of these datasets), and therefore constitutes a plausible mechanistic account of the acquisition of verbs’ argument structure restrictions. F1000 Research Limited 2022-01-12 /pmc/articles/PMC10446094/ /pubmed/37645154 http://dx.doi.org/10.12688/openreseurope.13008.2 Text en Copyright: © 2022 Ambridge B et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Ambridge, Ben
Doherty, Laura
Maitreyee, Ramya
Tatsumi, Tomoko
Zicherman, Shira
Mateo Pedro, Pedro
Kawakami, Ayuno
Bidgood, Amy
Pye, Clifton
Narasimhan, Bhuvana
Arnon, Inbal
Bekman, Dani
Efrati, Amir
Fabiola Can Pixabaj, Sindy
Marroquín Pelíz, Mario
Julajuj Mendoza, Margarita
Samanta, Soumitra
Campbell, Seth
McCauley, Stewart
Berman, Ruth
Misra Sharma, Dipti
Bhaya Nair, Rukmini
Fukumura, Kumiko
Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’
title Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’
title_full Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’
title_fullStr Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’
title_full_unstemmed Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’
title_short Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’
title_sort testing a computational model of causative overgeneralizations: child judgment and production data from english, hebrew, hindi, japanese and k’iche’
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446094/
https://www.ncbi.nlm.nih.gov/pubmed/37645154
http://dx.doi.org/10.12688/openreseurope.13008.2
work_keys_str_mv AT ambridgeben testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT dohertylaura testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT maitreyeeramya testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT tatsumitomoko testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT zichermanshira testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT mateopedropedro testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT kawakamiayuno testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT bidgoodamy testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT pyeclifton testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT narasimhanbhuvana testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT arnoninbal testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT bekmandani testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT efratiamir testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT fabiolacanpixabajsindy testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT marroquinpelizmario testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT julajujmendozamargarita testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT samantasoumitra testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT campbellseth testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT mccauleystewart testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT bermanruth testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT misrasharmadipti testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT bhayanairrukmini testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche
AT fukumurakumiko testingacomputationalmodelofcausativeovergeneralizationschildjudgmentandproductiondatafromenglishhebrewhindijapaneseandkiche