Cargando…
Deciphering “the language of nature”: A transformer-based language model for deleterious mutations in proteins
Various machine-learning models, including deep neural network models, have already been developed to predict deleteriousness of missense (non-synonymous) mutations. Potential improvements to the current state of the art, however, may still benefit from a fresh look at the biological problem using m...
Autores principales: | Jiang, Theodore T., Fang, Li, Wang, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448337/ https://www.ncbi.nlm.nih.gov/pubmed/37636282 http://dx.doi.org/10.1016/j.xinn.2023.100487 |
Ejemplares similares
-
Transformers for Natural Language Processing
por: Rothman, Denis
Publicado: (2021) -
Natural Language Processing with Transformers
por: Tunstall, Lewis, et al.
Publicado: (2022) -
Deciphering microbial gene function using natural language processing
por: Miller, Danielle, et al.
Publicado: (2022) -
Bioformer: an efficient transformer language model for biomedical text mining
por: Fang, Li, et al.
Publicado: (2023) -
Transformers-sklearn: a toolkit for medical language understanding with transformer-based models
por: Yang, Feihong, et al.
Publicado: (2021)