Cargando…

A general method for the development of multicolor biosensors with large dynamic ranges

Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reve...

Descripción completa

Detalles Bibliográficos
Autores principales: Hellweg, Lars, Edenhofer, Anna, Barck, Lucas, Huppertz, Magnus-Carsten, Frei, Michelle. S., Tarnawski, Miroslaw, Bergner, Andrea, Koch, Birgit, Johnsson, Kai, Hiblot, Julien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449634/
https://www.ncbi.nlm.nih.gov/pubmed/37291200
http://dx.doi.org/10.1038/s41589-023-01350-1
_version_ 1785095000994873344
author Hellweg, Lars
Edenhofer, Anna
Barck, Lucas
Huppertz, Magnus-Carsten
Frei, Michelle. S.
Tarnawski, Miroslaw
Bergner, Andrea
Koch, Birgit
Johnsson, Kai
Hiblot, Julien
author_facet Hellweg, Lars
Edenhofer, Anna
Barck, Lucas
Huppertz, Magnus-Carsten
Frei, Michelle. S.
Tarnawski, Miroslaw
Bergner, Andrea
Koch, Birgit
Johnsson, Kai
Hiblot, Julien
author_sort Hellweg, Lars
collection PubMed
description Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reversible interaction of fluorescent proteins with a fluorescently labeled HaloTag. These FRET pairs enabled the straightforward design of biosensors for calcium, ATP and NAD(+) with unprecedented dynamic ranges. The color of each of these biosensors can be readily tuned by changing either the fluorescent protein or the synthetic fluorophore, which enables simultaneous monitoring of free NAD(+) in different subcellular compartments following genotoxic stress. Minimal modifications of these biosensors furthermore allow their readout to be switched to fluorescence intensity, fluorescence lifetime or bioluminescence. These FRET pairs thus establish a new concept for the development of highly sensitive and tunable biosensors. [Image: see text]
format Online
Article
Text
id pubmed-10449634
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-104496342023-08-26 A general method for the development of multicolor biosensors with large dynamic ranges Hellweg, Lars Edenhofer, Anna Barck, Lucas Huppertz, Magnus-Carsten Frei, Michelle. S. Tarnawski, Miroslaw Bergner, Andrea Koch, Birgit Johnsson, Kai Hiblot, Julien Nat Chem Biol Article Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reversible interaction of fluorescent proteins with a fluorescently labeled HaloTag. These FRET pairs enabled the straightforward design of biosensors for calcium, ATP and NAD(+) with unprecedented dynamic ranges. The color of each of these biosensors can be readily tuned by changing either the fluorescent protein or the synthetic fluorophore, which enables simultaneous monitoring of free NAD(+) in different subcellular compartments following genotoxic stress. Minimal modifications of these biosensors furthermore allow their readout to be switched to fluorescence intensity, fluorescence lifetime or bioluminescence. These FRET pairs thus establish a new concept for the development of highly sensitive and tunable biosensors. [Image: see text] Nature Publishing Group US 2023-06-08 2023 /pmc/articles/PMC10449634/ /pubmed/37291200 http://dx.doi.org/10.1038/s41589-023-01350-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Hellweg, Lars
Edenhofer, Anna
Barck, Lucas
Huppertz, Magnus-Carsten
Frei, Michelle. S.
Tarnawski, Miroslaw
Bergner, Andrea
Koch, Birgit
Johnsson, Kai
Hiblot, Julien
A general method for the development of multicolor biosensors with large dynamic ranges
title A general method for the development of multicolor biosensors with large dynamic ranges
title_full A general method for the development of multicolor biosensors with large dynamic ranges
title_fullStr A general method for the development of multicolor biosensors with large dynamic ranges
title_full_unstemmed A general method for the development of multicolor biosensors with large dynamic ranges
title_short A general method for the development of multicolor biosensors with large dynamic ranges
title_sort general method for the development of multicolor biosensors with large dynamic ranges
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449634/
https://www.ncbi.nlm.nih.gov/pubmed/37291200
http://dx.doi.org/10.1038/s41589-023-01350-1
work_keys_str_mv AT hellweglars ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT edenhoferanna ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT barcklucas ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT huppertzmagnuscarsten ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT freimichelles ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT tarnawskimiroslaw ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT bergnerandrea ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT kochbirgit ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT johnssonkai ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT hiblotjulien ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT hellweglars generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT edenhoferanna generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT barcklucas generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT huppertzmagnuscarsten generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT freimichelles generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT tarnawskimiroslaw generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT bergnerandrea generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT kochbirgit generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT johnssonkai generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges
AT hiblotjulien generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges