Cargando…
A general method for the development of multicolor biosensors with large dynamic ranges
Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reve...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449634/ https://www.ncbi.nlm.nih.gov/pubmed/37291200 http://dx.doi.org/10.1038/s41589-023-01350-1 |
_version_ | 1785095000994873344 |
---|---|
author | Hellweg, Lars Edenhofer, Anna Barck, Lucas Huppertz, Magnus-Carsten Frei, Michelle. S. Tarnawski, Miroslaw Bergner, Andrea Koch, Birgit Johnsson, Kai Hiblot, Julien |
author_facet | Hellweg, Lars Edenhofer, Anna Barck, Lucas Huppertz, Magnus-Carsten Frei, Michelle. S. Tarnawski, Miroslaw Bergner, Andrea Koch, Birgit Johnsson, Kai Hiblot, Julien |
author_sort | Hellweg, Lars |
collection | PubMed |
description | Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reversible interaction of fluorescent proteins with a fluorescently labeled HaloTag. These FRET pairs enabled the straightforward design of biosensors for calcium, ATP and NAD(+) with unprecedented dynamic ranges. The color of each of these biosensors can be readily tuned by changing either the fluorescent protein or the synthetic fluorophore, which enables simultaneous monitoring of free NAD(+) in different subcellular compartments following genotoxic stress. Minimal modifications of these biosensors furthermore allow their readout to be switched to fluorescence intensity, fluorescence lifetime or bioluminescence. These FRET pairs thus establish a new concept for the development of highly sensitive and tunable biosensors. [Image: see text] |
format | Online Article Text |
id | pubmed-10449634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-104496342023-08-26 A general method for the development of multicolor biosensors with large dynamic ranges Hellweg, Lars Edenhofer, Anna Barck, Lucas Huppertz, Magnus-Carsten Frei, Michelle. S. Tarnawski, Miroslaw Bergner, Andrea Koch, Birgit Johnsson, Kai Hiblot, Julien Nat Chem Biol Article Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reversible interaction of fluorescent proteins with a fluorescently labeled HaloTag. These FRET pairs enabled the straightforward design of biosensors for calcium, ATP and NAD(+) with unprecedented dynamic ranges. The color of each of these biosensors can be readily tuned by changing either the fluorescent protein or the synthetic fluorophore, which enables simultaneous monitoring of free NAD(+) in different subcellular compartments following genotoxic stress. Minimal modifications of these biosensors furthermore allow their readout to be switched to fluorescence intensity, fluorescence lifetime or bioluminescence. These FRET pairs thus establish a new concept for the development of highly sensitive and tunable biosensors. [Image: see text] Nature Publishing Group US 2023-06-08 2023 /pmc/articles/PMC10449634/ /pubmed/37291200 http://dx.doi.org/10.1038/s41589-023-01350-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Hellweg, Lars Edenhofer, Anna Barck, Lucas Huppertz, Magnus-Carsten Frei, Michelle. S. Tarnawski, Miroslaw Bergner, Andrea Koch, Birgit Johnsson, Kai Hiblot, Julien A general method for the development of multicolor biosensors with large dynamic ranges |
title | A general method for the development of multicolor biosensors with large dynamic ranges |
title_full | A general method for the development of multicolor biosensors with large dynamic ranges |
title_fullStr | A general method for the development of multicolor biosensors with large dynamic ranges |
title_full_unstemmed | A general method for the development of multicolor biosensors with large dynamic ranges |
title_short | A general method for the development of multicolor biosensors with large dynamic ranges |
title_sort | general method for the development of multicolor biosensors with large dynamic ranges |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449634/ https://www.ncbi.nlm.nih.gov/pubmed/37291200 http://dx.doi.org/10.1038/s41589-023-01350-1 |
work_keys_str_mv | AT hellweglars ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT edenhoferanna ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT barcklucas ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT huppertzmagnuscarsten ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT freimichelles ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT tarnawskimiroslaw ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT bergnerandrea ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT kochbirgit ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT johnssonkai ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT hiblotjulien ageneralmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT hellweglars generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT edenhoferanna generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT barcklucas generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT huppertzmagnuscarsten generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT freimichelles generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT tarnawskimiroslaw generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT bergnerandrea generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT kochbirgit generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT johnssonkai generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges AT hiblotjulien generalmethodforthedevelopmentofmulticolorbiosensorswithlargedynamicranges |