Cargando…
A Route to Potent, Selective, and Biased Salvinorin Chemical Space
[Image: see text] The salvinorins serve as templates for next generation analgesics, antipruritics, and dissociative hallucinogens via selective and potent agonism of the kappa-opioid receptor (KOR). In contrast to most opioids, the salvinorins lack basic amines and bind with high affinity and selec...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450872/ https://www.ncbi.nlm.nih.gov/pubmed/37637743 http://dx.doi.org/10.1021/acscentsci.3c00616 |
Sumario: | [Image: see text] The salvinorins serve as templates for next generation analgesics, antipruritics, and dissociative hallucinogens via selective and potent agonism of the kappa-opioid receptor (KOR). In contrast to most opioids, the salvinorins lack basic amines and bind with high affinity and selectivity via complex polyoxygenated scaffolds that have frustrated deep-seated modification by synthesis. Here we describe a short asymmetric synthesis that relies on a sterically confined organocatalyst to dissociate acidity from reactivity and effect Robinson annulation of an unactivated nucleophile/unstable electrophile pair. Combined with a cobalt-catalyzed polarized diene-alkyne cycloaddition, the route allows divergent access to a focused library of salvinorins. We appraise the synthesis by its generation of multiple analogs that exceed the potency, selectivity, stability, and functional bias of salvinorin A itself. |
---|