Cargando…

A Robust Semi-Direct 3D SLAM for Mobile Robot Based on Dense Optical Flow in Dynamic Scenes

Dynamic objects bring about a large number of error accumulations in pose estimation of mobile robots in dynamic scenes, and result in the failure to build a map that is consistent with the surrounding environment. Along these lines, this paper presents a robust semi-direct 3D simultaneous localizat...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Bo, Luo, Jingwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452154/
https://www.ncbi.nlm.nih.gov/pubmed/37622976
http://dx.doi.org/10.3390/biomimetics8040371
Descripción
Sumario:Dynamic objects bring about a large number of error accumulations in pose estimation of mobile robots in dynamic scenes, and result in the failure to build a map that is consistent with the surrounding environment. Along these lines, this paper presents a robust semi-direct 3D simultaneous localization and mapping (SLAM) algorithm for mobile robots based on dense optical flow. First, a preliminary estimation of the robot’s pose is conducted using the sparse direct method and the homography matrix is utilized to compensate for the current frame image to reduce the image deformation caused by rotation during the robot’s motion. Then, by calculating the dense optical flow field of two adjacent frames and segmenting the dynamic region in the scene based on the dynamic threshold, the local map points projected within the dynamic regions are eliminated. On this basis, the robot’s pose is optimized by minimizing the reprojection error. Moreover, a high-performance keyframe selection strategy is developed, and keyframes are inserted when the robot’s pose is successfully tracked. Meanwhile, feature points are extracted and matched to the keyframes for subsequent optimization and mapping. Considering that the direct method is subject to tracking failure in practical application scenarios, the feature points and map points of keyframes are employed in robot relocation. Finally, all keyframes and map points are used as optimization variables for global bundle adjustment (BA) optimization, so as to construct a globally consistent 3D dense octree map. A series of simulations and experiments demonstrate the superior performance of the proposed algorithm.