Cargando…

Microbiome of Free-Living Amoebae (FLA) Isolated from Fresh Organic Produce: Potential Risk to Consumers?

In response to growing global interest in organic agriculture, this study delves into the microbial landscape of organically grown raw produce with a focus on food safety. Vegetables that are consumed raw are potential vehicles for the transmission of any type of microorganism capable of causing hum...

Descripción completa

Detalles Bibliográficos
Autores principales: Soler, Lara, Moreno, Yolanda, Moreno-Mesonero, Laura, Amorós, Inmaculada, Alonso, José Luís, Ferrús, María Antonia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453443/
https://www.ncbi.nlm.nih.gov/pubmed/37628102
http://dx.doi.org/10.3390/foods12163102
Descripción
Sumario:In response to growing global interest in organic agriculture, this study delves into the microbial landscape of organically grown raw produce with a focus on food safety. Vegetables that are consumed raw are potential vehicles for the transmission of any type of microorganism capable of causing human disease. Free-living amoebae (FLA) are ubiquitous protozoa found in many ecosystems and can serve as hosts to pathogenic bacteria. So far, data regarding the FLA bacterial microbiome in fresh produce remain scarce and are non-existent for those of organic origin. Thus, the aim of this preliminary work is to characterize the microbiome of FLA in commonly consumed raw vegetables to know their possible implications for consumers. A total of 40 organic cabbage, lettuce, spinach, and strawberry samples were analyzed. FLA were found in all samples, and their bacterial microbiome was obtained via amplicon sequencing using the Illumina MiSeq platform and pair-end protocol. Acanthamoeba spp. and Vermamoeba vermiformis were identified via qPCR in 65.0% and 25.0% of the samples, respectively. Regarding the bacterial microbiome of FLA, the most abundant genera were Pseudomonas (1.8–17.8%) and Flavobacterium (1.7–12.6%). Bacteria not previously related to FLA, such as Prosthecobacter or Cellvibrio, are described in this work. Importantly, several bacterial genera found within the FLA microbiome were identified as potential human pathogens, including Pseudomonas, Flavobacterium, Arcobacter, Klebsiella, Mycobacterium, Salmonella and Legionella. This is the first work in which FLA microbiome isolated from organic products has been characterized, underscoring the significance of understanding FLA’s role as carriers of pathogenic bacteria in the context of organic food safety.