Cargando…
Quantitative cross-linking via engineered cysteines to study inter-domain interactions in bacterial collagenases
Inter-domain movements act as important activity modulators in multi-domain proteins. Here, we present a protocol for inter-domain cross-linking via engineered cysteines. Using collagenase G (ColG) from Hathewaya histolytica as a model, we describe steps for the design, expression, purification, and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458335/ https://www.ncbi.nlm.nih.gov/pubmed/37605531 http://dx.doi.org/10.1016/j.xpro.2023.102519 |
Sumario: | Inter-domain movements act as important activity modulators in multi-domain proteins. Here, we present a protocol for inter-domain cross-linking via engineered cysteines. Using collagenase G (ColG) from Hathewaya histolytica as a model, we describe steps for the design, expression, purification, and cross-linking of the target protein. We detail a system to monitor the progress of the cross-linking reaction and to confirm the structural integrity of the purified cross-linked proteins. We anticipate this protocol to be readily adaptable to other multi-domain enzymes. For complete details on the use and execution of this protocol, please refer to Serwanja et al.(1) |
---|