Cargando…

Effects of Infrared and Microwave Radiation on the Bioactive Compounds of Microalga Spirulina platensis after Continuous and Intermittent Drying

Pharmaceutical, nutritional and food industries have recently become interested in the potential of Spirulina platensis, a kind of cyanobacterium with high levels of proteins, vitamins and bioactive compounds. Because of its high moisture, this microalga needs to be submitted to a preservation techn...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Neiton C., Graton, Isabelle S., Duarte, Claudio R., Barrozo, Marcos A. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458413/
https://www.ncbi.nlm.nih.gov/pubmed/37630215
http://dx.doi.org/10.3390/molecules28165963
Descripción
Sumario:Pharmaceutical, nutritional and food industries have recently become interested in the potential of Spirulina platensis, a kind of cyanobacterium with high levels of proteins, vitamins and bioactive compounds. Because of its high moisture, this microalga needs to be submitted to a preservation technique such as drying to be properly used. The aim of this work is to investigate the use of infrared and microwave radiation in the Spirulina platensis drying process. The experiments were performed in continuous and intermittent modes, evaluating different operating conditions for infrared and microwave drying, as well as their effects on the quality of the final product, expressed by the content of bioactive compounds (i.e., total phenolic, total flavonoid, citric acid and phycocyanin contents). The results proved that the use of electromagnetic radiation in the drying of spirulina is an interesting alternative for processing this material if performed under adequate operating conditions. The experiments carried out continuously at lower temperatures and powers and the combination between different temperatures and powers in the intermittent mode resulted in a final product with satisfactory levels of bioactive compounds and low operation times in comparison with conventional methodologies.