Cargando…

Phage-Based Biosensing for Rapid and Specific Detection of Staphylococcus aureus

Staphylococcus aureus (S. aureus) is a major foodborne pathogen. Rapid and specific detection is crucial for controlling staphylococcal food poisoning. This study reported a Staphylococcus phage named LSA2302 showing great potential for applications in the rapid detection of S. aureus. Its biologica...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ruining, Li, Zhiwei, Huang, Chenxi, Ding, Yifeng, Wang, Jia, Wang, Xiaohong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458643/
https://www.ncbi.nlm.nih.gov/pubmed/37630658
http://dx.doi.org/10.3390/microorganisms11082098
Descripción
Sumario:Staphylococcus aureus (S. aureus) is a major foodborne pathogen. Rapid and specific detection is crucial for controlling staphylococcal food poisoning. This study reported a Staphylococcus phage named LSA2302 showing great potential for applications in the rapid detection of S. aureus. Its biological characteristics were identified, including growth properties and stability under different pH and temperature conditions. The genomic analysis revealed that the phage has no genes associated with pathogenicity or drug resistance. Then, the phage-functionalized magnetic beads (pMB), serving as a biological recognition element, were integrated with ATP bioluminescence assays to establish a biosensing method for S. aureus detection. The pMB enrichment brought high specificity and a tenfold increase in analytical sensitivity during detection. The whole detection process could be completed within 30 min, with a broad linear range of 1 × 10(4) to 1 × 10(8) CFU/mL and a limit of detection (LOD) of 2.43 × 10(3) CFU/mL. After a 2 h pre-cultivation, this method is capable of detecting bacteria as low as 1 CFU/mL. The recoveries of S. aureus in spiked skim milk and chicken samples were 81.07% to 99.17% and 86.98% to 104.62%, respectively. Our results indicated that phage-based biosensing can contribute to the detection of target pathogens in foods.