Cargando…
A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning †
Gastric mechanical stress often impacts drug dissolution from solid oral dosage forms, but in vitro experiments cannot recreate the substantial variability of gastric motility in a reasonable time. This study, for the first time, combines a novel dissolution apparatus with the design of experiments...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458881/ https://www.ncbi.nlm.nih.gov/pubmed/37631270 http://dx.doi.org/10.3390/pharmaceutics15082056 |
_version_ | 1785097272680251392 |
---|---|
author | Staniszewska, Marcela Romański, Michał Polak, Sebastian Garbacz, Grzegorz Dobosz, Justyna Myslitska, Daria Romanova, Svitlana Paszkowska, Jadwiga Danielak, Dorota |
author_facet | Staniszewska, Marcela Romański, Michał Polak, Sebastian Garbacz, Grzegorz Dobosz, Justyna Myslitska, Daria Romanova, Svitlana Paszkowska, Jadwiga Danielak, Dorota |
author_sort | Staniszewska, Marcela |
collection | PubMed |
description | Gastric mechanical stress often impacts drug dissolution from solid oral dosage forms, but in vitro experiments cannot recreate the substantial variability of gastric motility in a reasonable time. This study, for the first time, combines a novel dissolution apparatus with the design of experiments (DoE) and machine learning (ML) to overcome this obstacle. The workflow involves the testing of soft gelatin capsules in a set of fasted-state biorelevant dissolution experiments created with DoE. The dissolution results are used by an ML algorithm to build the classification model of the capsule’s opening in response to intragastric stress (IS) within the physiological space of timing and magnitude. Next, a random forest algorithm is used to model the further drug dissolution. The predictive power of the two ML models is verified with independent dissolution tests, and they outperform a polynomial-based DoE model. Moreover, the developed tool reasonably simulates over 50 dissolution profiles under varying IS conditions. Hence, we prove that our method can be utilized for the simulation of dissolution profiles related to the multiplicity of individual gastric motility patterns. In perspective, the developed workflow can improve virtual bioequivalence trials and the patient-centric development of immediate-release oral dosage forms. |
format | Online Article Text |
id | pubmed-10458881 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104588812023-08-27 A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning † Staniszewska, Marcela Romański, Michał Polak, Sebastian Garbacz, Grzegorz Dobosz, Justyna Myslitska, Daria Romanova, Svitlana Paszkowska, Jadwiga Danielak, Dorota Pharmaceutics Article Gastric mechanical stress often impacts drug dissolution from solid oral dosage forms, but in vitro experiments cannot recreate the substantial variability of gastric motility in a reasonable time. This study, for the first time, combines a novel dissolution apparatus with the design of experiments (DoE) and machine learning (ML) to overcome this obstacle. The workflow involves the testing of soft gelatin capsules in a set of fasted-state biorelevant dissolution experiments created with DoE. The dissolution results are used by an ML algorithm to build the classification model of the capsule’s opening in response to intragastric stress (IS) within the physiological space of timing and magnitude. Next, a random forest algorithm is used to model the further drug dissolution. The predictive power of the two ML models is verified with independent dissolution tests, and they outperform a polynomial-based DoE model. Moreover, the developed tool reasonably simulates over 50 dissolution profiles under varying IS conditions. Hence, we prove that our method can be utilized for the simulation of dissolution profiles related to the multiplicity of individual gastric motility patterns. In perspective, the developed workflow can improve virtual bioequivalence trials and the patient-centric development of immediate-release oral dosage forms. MDPI 2023-07-31 /pmc/articles/PMC10458881/ /pubmed/37631270 http://dx.doi.org/10.3390/pharmaceutics15082056 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Staniszewska, Marcela Romański, Michał Polak, Sebastian Garbacz, Grzegorz Dobosz, Justyna Myslitska, Daria Romanova, Svitlana Paszkowska, Jadwiga Danielak, Dorota A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning † |
title | A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning † |
title_full | A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning † |
title_fullStr | A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning † |
title_full_unstemmed | A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning † |
title_short | A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning † |
title_sort | rational approach to predicting immediate release formulation behavior in multiple gastric motility patterns: a combination of a biorelevant apparatus, design of experiments, and machine learning † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458881/ https://www.ncbi.nlm.nih.gov/pubmed/37631270 http://dx.doi.org/10.3390/pharmaceutics15082056 |
work_keys_str_mv | AT staniszewskamarcela arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT romanskimichał arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT polaksebastian arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT garbaczgrzegorz arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT doboszjustyna arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT myslitskadaria arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT romanovasvitlana arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT paszkowskajadwiga arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT danielakdorota arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT staniszewskamarcela rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT romanskimichał rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT polaksebastian rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT garbaczgrzegorz rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT doboszjustyna rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT myslitskadaria rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT romanovasvitlana rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT paszkowskajadwiga rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning AT danielakdorota rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning |