Cargando…

A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning †

Gastric mechanical stress often impacts drug dissolution from solid oral dosage forms, but in vitro experiments cannot recreate the substantial variability of gastric motility in a reasonable time. This study, for the first time, combines a novel dissolution apparatus with the design of experiments...

Descripción completa

Detalles Bibliográficos
Autores principales: Staniszewska, Marcela, Romański, Michał, Polak, Sebastian, Garbacz, Grzegorz, Dobosz, Justyna, Myslitska, Daria, Romanova, Svitlana, Paszkowska, Jadwiga, Danielak, Dorota
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458881/
https://www.ncbi.nlm.nih.gov/pubmed/37631270
http://dx.doi.org/10.3390/pharmaceutics15082056
_version_ 1785097272680251392
author Staniszewska, Marcela
Romański, Michał
Polak, Sebastian
Garbacz, Grzegorz
Dobosz, Justyna
Myslitska, Daria
Romanova, Svitlana
Paszkowska, Jadwiga
Danielak, Dorota
author_facet Staniszewska, Marcela
Romański, Michał
Polak, Sebastian
Garbacz, Grzegorz
Dobosz, Justyna
Myslitska, Daria
Romanova, Svitlana
Paszkowska, Jadwiga
Danielak, Dorota
author_sort Staniszewska, Marcela
collection PubMed
description Gastric mechanical stress often impacts drug dissolution from solid oral dosage forms, but in vitro experiments cannot recreate the substantial variability of gastric motility in a reasonable time. This study, for the first time, combines a novel dissolution apparatus with the design of experiments (DoE) and machine learning (ML) to overcome this obstacle. The workflow involves the testing of soft gelatin capsules in a set of fasted-state biorelevant dissolution experiments created with DoE. The dissolution results are used by an ML algorithm to build the classification model of the capsule’s opening in response to intragastric stress (IS) within the physiological space of timing and magnitude. Next, a random forest algorithm is used to model the further drug dissolution. The predictive power of the two ML models is verified with independent dissolution tests, and they outperform a polynomial-based DoE model. Moreover, the developed tool reasonably simulates over 50 dissolution profiles under varying IS conditions. Hence, we prove that our method can be utilized for the simulation of dissolution profiles related to the multiplicity of individual gastric motility patterns. In perspective, the developed workflow can improve virtual bioequivalence trials and the patient-centric development of immediate-release oral dosage forms.
format Online
Article
Text
id pubmed-10458881
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104588812023-08-27 A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning † Staniszewska, Marcela Romański, Michał Polak, Sebastian Garbacz, Grzegorz Dobosz, Justyna Myslitska, Daria Romanova, Svitlana Paszkowska, Jadwiga Danielak, Dorota Pharmaceutics Article Gastric mechanical stress often impacts drug dissolution from solid oral dosage forms, but in vitro experiments cannot recreate the substantial variability of gastric motility in a reasonable time. This study, for the first time, combines a novel dissolution apparatus with the design of experiments (DoE) and machine learning (ML) to overcome this obstacle. The workflow involves the testing of soft gelatin capsules in a set of fasted-state biorelevant dissolution experiments created with DoE. The dissolution results are used by an ML algorithm to build the classification model of the capsule’s opening in response to intragastric stress (IS) within the physiological space of timing and magnitude. Next, a random forest algorithm is used to model the further drug dissolution. The predictive power of the two ML models is verified with independent dissolution tests, and they outperform a polynomial-based DoE model. Moreover, the developed tool reasonably simulates over 50 dissolution profiles under varying IS conditions. Hence, we prove that our method can be utilized for the simulation of dissolution profiles related to the multiplicity of individual gastric motility patterns. In perspective, the developed workflow can improve virtual bioequivalence trials and the patient-centric development of immediate-release oral dosage forms. MDPI 2023-07-31 /pmc/articles/PMC10458881/ /pubmed/37631270 http://dx.doi.org/10.3390/pharmaceutics15082056 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Staniszewska, Marcela
Romański, Michał
Polak, Sebastian
Garbacz, Grzegorz
Dobosz, Justyna
Myslitska, Daria
Romanova, Svitlana
Paszkowska, Jadwiga
Danielak, Dorota
A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning †
title A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning †
title_full A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning †
title_fullStr A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning †
title_full_unstemmed A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning †
title_short A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning †
title_sort rational approach to predicting immediate release formulation behavior in multiple gastric motility patterns: a combination of a biorelevant apparatus, design of experiments, and machine learning †
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458881/
https://www.ncbi.nlm.nih.gov/pubmed/37631270
http://dx.doi.org/10.3390/pharmaceutics15082056
work_keys_str_mv AT staniszewskamarcela arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT romanskimichał arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT polaksebastian arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT garbaczgrzegorz arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT doboszjustyna arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT myslitskadaria arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT romanovasvitlana arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT paszkowskajadwiga arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT danielakdorota arationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT staniszewskamarcela rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT romanskimichał rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT polaksebastian rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT garbaczgrzegorz rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT doboszjustyna rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT myslitskadaria rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT romanovasvitlana rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT paszkowskajadwiga rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning
AT danielakdorota rationalapproachtopredictingimmediatereleaseformulationbehaviorinmultiplegastricmotilitypatternsacombinationofabiorelevantapparatusdesignofexperimentsandmachinelearning