Cargando…
CaFANet: Causal-Factors-Aware Attention Networks for Equipment Fault Prediction in the Internet of Things
Existing fault prediction algorithms based on deep learning have achieved good prediction performance. These algorithms treat all features fairly and assume that the progression of the equipment faults is stationary throughout the entire lifecycle. In fact, each feature has a different contribution...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459481/ https://www.ncbi.nlm.nih.gov/pubmed/37631576 http://dx.doi.org/10.3390/s23167040 |