Cargando…
CaFANet: Causal-Factors-Aware Attention Networks for Equipment Fault Prediction in the Internet of Things
Existing fault prediction algorithms based on deep learning have achieved good prediction performance. These algorithms treat all features fairly and assume that the progression of the equipment faults is stationary throughout the entire lifecycle. In fact, each feature has a different contribution...
Autores principales: | Gui, Zhenwen, He, Shuaishuai, Lin, Yao, Nan, Xin, Yin, Xiaoyan, Wu, Chase Q. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459481/ https://www.ncbi.nlm.nih.gov/pubmed/37631576 http://dx.doi.org/10.3390/s23167040 |
Ejemplares similares
-
Multi-Modal Learning-Based Equipment Fault Prediction in the Internet of Things
por: Nan, Xin, et al.
Publicado: (2022) -
Routing Schemes in FANETs: A Survey
por: Khan, Muhammad Fahad, et al.
Publicado: (2019) -
Security and fault tolerance in Internet of Things
por: Chakraborty, Rajat Subhra, et al.
Publicado: (2019) -
Arithmetic Optimization AOMDV Routing Protocol for FANETs
por: Wang, Huamin, et al.
Publicado: (2023) -
A Genetic-Algorithm-Based Optimization Routing for FANETs
por: Wei, Xing, et al.
Publicado: (2021)