Cargando…

Tumor cell p38 inhibition to overcome immunotherapy resistance

Patients with tumors that do not respond to immune-checkpoint inhibition often harbor a non-T cell-inflamed tumor microenvironment, characterized by the absence of IFN-γ-associated CD8(+) T cell and dendritic cell activation. Understanding the molecular mechanisms underlying immune exclusion in non-...

Descripción completa

Detalles Bibliográficos
Autores principales: Luke, Jason J., Dadey, Rebekah E., Augustin, Ryan C., Newman, Sarah, Singh, Krishna B., Doerfler, Rose, Behr, Sarah, Lee, Patrice, Isett, Brian, Deitrick, Christopher, Li, Aofei, Joy, Marion, Reeder, Carly, Smith, Katelyn, Urban, Julie, Sellitto, Lorenzo, Jelinek, Mark, Christner, Susan M., Beumer, Jan H., Villaruz, Liza C., Kulkarni, Aditi, Davar, Diwakar, Poklepovic, Andrew S., Najjar, Yana, Zandberg, Dan P., Soloff, Adam C., Bruno, Tullia C., Vujanović, Lazar, Skinner, Heath D., Ferris, Robert L., Bao, Riyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462255/
https://www.ncbi.nlm.nih.gov/pubmed/37645831
http://dx.doi.org/10.21203/rs.3.rs-3183496/v1
_version_ 1785098019138437120
author Luke, Jason J.
Dadey, Rebekah E.
Augustin, Ryan C.
Newman, Sarah
Singh, Krishna B.
Doerfler, Rose
Behr, Sarah
Lee, Patrice
Isett, Brian
Deitrick, Christopher
Li, Aofei
Joy, Marion
Reeder, Carly
Smith, Katelyn
Urban, Julie
Sellitto, Lorenzo
Jelinek, Mark
Christner, Susan M.
Beumer, Jan H.
Villaruz, Liza C.
Kulkarni, Aditi
Davar, Diwakar
Poklepovic, Andrew S.
Najjar, Yana
Zandberg, Dan P.
Soloff, Adam C.
Bruno, Tullia C.
Vujanović, Lazar
Skinner, Heath D.
Ferris, Robert L.
Bao, Riyue
author_facet Luke, Jason J.
Dadey, Rebekah E.
Augustin, Ryan C.
Newman, Sarah
Singh, Krishna B.
Doerfler, Rose
Behr, Sarah
Lee, Patrice
Isett, Brian
Deitrick, Christopher
Li, Aofei
Joy, Marion
Reeder, Carly
Smith, Katelyn
Urban, Julie
Sellitto, Lorenzo
Jelinek, Mark
Christner, Susan M.
Beumer, Jan H.
Villaruz, Liza C.
Kulkarni, Aditi
Davar, Diwakar
Poklepovic, Andrew S.
Najjar, Yana
Zandberg, Dan P.
Soloff, Adam C.
Bruno, Tullia C.
Vujanović, Lazar
Skinner, Heath D.
Ferris, Robert L.
Bao, Riyue
author_sort Luke, Jason J.
collection PubMed
description Patients with tumors that do not respond to immune-checkpoint inhibition often harbor a non-T cell-inflamed tumor microenvironment, characterized by the absence of IFN-γ-associated CD8(+) T cell and dendritic cell activation. Understanding the molecular mechanisms underlying immune exclusion in non-responding patients may enable the development of novel combination therapies. p38 MAPK is a known regulator of dendritic and myeloid cells however a tumor-intrinsic immunomodulatory role has not been previously described. Here we identify tumor cell p38 signaling as a therapeutic target to potentiate anti-tumor immunity and overcome resistance to immune-checkpoint inhibitors (ICI). Molecular analysis of tumor tissues from patients with human papillomavirus-negative head and neck squamous carcinoma reveals a p38-centered network enriched in non-T cell-inflamed tumors. Pan-cancer single-cell RNA analysis suggests that p38 activation may be an immune-exclusion mechanism across multiple tumor types. P38 knockdown in cancer cell lines increases T cell migration, and p38 inhibition plus ICI in preclinical models shows greater efficacy compared to monotherapies. In a clinical trial of patients refractory to PD1/L1 therapy, pexmetinib, a p38 inhibitor, plus nivolumab demonstrated deep and durable clinical responses. Targeting of p38 with anti-PD1 has the potential to induce the T cell-inflamed phenotype and overcome immunotherapy resistance.
format Online
Article
Text
id pubmed-10462255
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Journal Experts
record_format MEDLINE/PubMed
spelling pubmed-104622552023-08-29 Tumor cell p38 inhibition to overcome immunotherapy resistance Luke, Jason J. Dadey, Rebekah E. Augustin, Ryan C. Newman, Sarah Singh, Krishna B. Doerfler, Rose Behr, Sarah Lee, Patrice Isett, Brian Deitrick, Christopher Li, Aofei Joy, Marion Reeder, Carly Smith, Katelyn Urban, Julie Sellitto, Lorenzo Jelinek, Mark Christner, Susan M. Beumer, Jan H. Villaruz, Liza C. Kulkarni, Aditi Davar, Diwakar Poklepovic, Andrew S. Najjar, Yana Zandberg, Dan P. Soloff, Adam C. Bruno, Tullia C. Vujanović, Lazar Skinner, Heath D. Ferris, Robert L. Bao, Riyue Res Sq Article Patients with tumors that do not respond to immune-checkpoint inhibition often harbor a non-T cell-inflamed tumor microenvironment, characterized by the absence of IFN-γ-associated CD8(+) T cell and dendritic cell activation. Understanding the molecular mechanisms underlying immune exclusion in non-responding patients may enable the development of novel combination therapies. p38 MAPK is a known regulator of dendritic and myeloid cells however a tumor-intrinsic immunomodulatory role has not been previously described. Here we identify tumor cell p38 signaling as a therapeutic target to potentiate anti-tumor immunity and overcome resistance to immune-checkpoint inhibitors (ICI). Molecular analysis of tumor tissues from patients with human papillomavirus-negative head and neck squamous carcinoma reveals a p38-centered network enriched in non-T cell-inflamed tumors. Pan-cancer single-cell RNA analysis suggests that p38 activation may be an immune-exclusion mechanism across multiple tumor types. P38 knockdown in cancer cell lines increases T cell migration, and p38 inhibition plus ICI in preclinical models shows greater efficacy compared to monotherapies. In a clinical trial of patients refractory to PD1/L1 therapy, pexmetinib, a p38 inhibitor, plus nivolumab demonstrated deep and durable clinical responses. Targeting of p38 with anti-PD1 has the potential to induce the T cell-inflamed phenotype and overcome immunotherapy resistance. American Journal Experts 2023-08-19 /pmc/articles/PMC10462255/ /pubmed/37645831 http://dx.doi.org/10.21203/rs.3.rs-3183496/v1 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Luke, Jason J.
Dadey, Rebekah E.
Augustin, Ryan C.
Newman, Sarah
Singh, Krishna B.
Doerfler, Rose
Behr, Sarah
Lee, Patrice
Isett, Brian
Deitrick, Christopher
Li, Aofei
Joy, Marion
Reeder, Carly
Smith, Katelyn
Urban, Julie
Sellitto, Lorenzo
Jelinek, Mark
Christner, Susan M.
Beumer, Jan H.
Villaruz, Liza C.
Kulkarni, Aditi
Davar, Diwakar
Poklepovic, Andrew S.
Najjar, Yana
Zandberg, Dan P.
Soloff, Adam C.
Bruno, Tullia C.
Vujanović, Lazar
Skinner, Heath D.
Ferris, Robert L.
Bao, Riyue
Tumor cell p38 inhibition to overcome immunotherapy resistance
title Tumor cell p38 inhibition to overcome immunotherapy resistance
title_full Tumor cell p38 inhibition to overcome immunotherapy resistance
title_fullStr Tumor cell p38 inhibition to overcome immunotherapy resistance
title_full_unstemmed Tumor cell p38 inhibition to overcome immunotherapy resistance
title_short Tumor cell p38 inhibition to overcome immunotherapy resistance
title_sort tumor cell p38 inhibition to overcome immunotherapy resistance
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462255/
https://www.ncbi.nlm.nih.gov/pubmed/37645831
http://dx.doi.org/10.21203/rs.3.rs-3183496/v1
work_keys_str_mv AT lukejasonj tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT dadeyrebekahe tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT augustinryanc tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT newmansarah tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT singhkrishnab tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT doerflerrose tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT behrsarah tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT leepatrice tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT isettbrian tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT deitrickchristopher tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT liaofei tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT joymarion tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT reedercarly tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT smithkatelyn tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT urbanjulie tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT sellittolorenzo tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT jelinekmark tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT christnersusanm tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT beumerjanh tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT villaruzlizac tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT kulkarniaditi tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT davardiwakar tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT poklepovicandrews tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT najjaryana tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT zandbergdanp tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT soloffadamc tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT brunotulliac tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT vujanoviclazar tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT skinnerheathd tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT ferrisrobertl tumorcellp38inhibitiontoovercomeimmunotherapyresistance
AT baoriyue tumorcellp38inhibitiontoovercomeimmunotherapyresistance