Cargando…

Pharmacodynamic and pharmacokinetic properties of the combined preparation of levothyroxine plus sustained- release liothyronine; a randomized controlled clinical trial

BACKGROUND: Understanding pharmacokinetics (PK) and pharmacodynamics (PD) of the sustained-release liothyronine (SR-T3) is of paramount importance to design therapeutic regimens that are able to simulate normal thyroid hormone secretion while avoiding excursions in the T3 serum concentration. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Mehran, Ladan, Amouzegar, Atieh, Foroutan, Seyed Mohsen, Masoumi, Safdar, Tohidi, Maryam, Abdi, Hengameh, Aghaei, Ali, Saghafinia, Amir Esmaeel, Azizi, Fereidoun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463362/
https://www.ncbi.nlm.nih.gov/pubmed/37641049
http://dx.doi.org/10.1186/s12902-023-01434-y
Descripción
Sumario:BACKGROUND: Understanding pharmacokinetics (PK) and pharmacodynamics (PD) of the sustained-release liothyronine (SR-T3) is of paramount importance to design therapeutic regimens that are able to simulate normal thyroid hormone secretion while avoiding excursions in the T3 serum concentration. Here, we designed a parallel randomized clinical trial to characterize the PK and PD of the combined preparations of LT4 + SR-T3 in hypothyroid patients. METHODS: Radioiodine-treated hypothyroid patients over 20 years of age, who attained euthyroidism with LT4 monotherapy were recruited from the Endocrine Clinic in Tehran. The patients were allocated to two intervention groups of group A: 9 µg SR-T3 plus 68.5 μg LT4 (ratio 1:7.5) and group B: 12 µg SR-T3 plus 60 µg LT4 (ratio 1:5), and a control group with LT4 monotherapy. For PD study, thyroid hormone profile was evaluated at 8 and 12 weeks intervals after intervention. To assess PK properties of SR-T3, T3-Cmax, T3-Tmax and AUC(0 − 24) were calculated at the last visit. RESULTS: Serum T4 and FT4 concentrations decreased in the intervention groups after 3 months. No significant difference was observed in serum T3 and FT3 concentrations before and after intervention. Serum T3/T4 ratio increased significantly in the intervention groups after intervention, with the highest increase in group B from 8.6 ± 2.03 at baseline to 12.2 ± 1.6. Comparison of trial groups at follow-up showed no differences in serum TSH, T4, T3 and T3/T4 concentrations among different groups. During 24 h, minimal variation in serum T3 concentration was observed in group B with mean ∆T3 of 15.4 ± 10.5 ng/dl. T3-Tmax, T3-Cmax and AUC(0 − 24) in the combined sustained-release preparation were 4.38 ± 1.1 h., 101.0 ± 5.7 ng/dl and 2257 ± 110 ng.h/L, respectively which were significantly different from the control group. CONCLUSION: Combined treatment with a single dose of SR-T3 plus LT4 is associated with increased serum T3/T4 ratio and minimal excursions in serum T3 concentration during 24 h; however, it was not significantly different from the control group. To incorporate sustained-release T3 in the management of hypothyroidism, a higher ratio of SR-T3 to LT4 than that of the previously recommended by the international organizations is suggested. IRCT REGISTRATION NUMBER: IRCT20100922004794N13. https://www.irct.ir/search/result?query=IRCT20100922004794N13. Registration date: 08/12/2021. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12902-023-01434-y.