Cargando…
SCA: recovering single-cell heterogeneity through information-based dimensionality reduction
Dimensionality reduction summarizes the complex transcriptomic landscape of single-cell datasets for downstream analyses. Current approaches favor large cellular populations defined by many genes, at the expense of smaller and more subtly defined populations. Here, we present surprisal component ana...
Autores principales: | DeMeo, Benjamin, Berger, Bonnie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464206/ https://www.ncbi.nlm.nih.gov/pubmed/37626411 http://dx.doi.org/10.1186/s13059-023-02998-7 |
Ejemplares similares
-
Three-dimensional mouse cochlea imaging based on the modified Sca/eS using confocal microscopy
por: Urata, Shinji, et al.
Publicado: (2023) -
Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities
por: Singh, Rohit, et al.
Publicado: (2021) -
Hopper: a mathematically optimal algorithm for sketching biological data
por: DeMeo, Benjamin, et al.
Publicado: (2020) -
netNMF-sc: leveraging gene–gene interactions for imputation and dimensionality reduction in single-cell expression analysis
por: Elyanow, Rebecca, et al.
Publicado: (2020) -
Method for geological characteristics prediction during shield tunnelling: SCA-GS
por: Yan, Tao
Publicado: (2022)